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Abstract 

This research addresses the application of a large eddy simulation (LES) to Arbitrary 

Lagrangian Eulerian (ALE) simulations of Rayleigh-Taylor instability. -First, ALE sim- 

ulations of simplified Rayleigh-Taylor instability are studied. The advantages of ALE 

over Eulerian simulations are shown. Next, the behavior of the LES is examined in a 

more complicated ALE simulation of Rayleigh-Taylor instability. The effects of eddy 

viscosity and stochastic backscatter are examined. The LES is also coupled with ALE to 

increase grid resolution in areas where it is needed. Finally, the methods studied above 

are applied to two sets of experimental simulations. In these simulations, ALE allows 

the mesh to follow expanding experimental targets, while LES can be used to mimic the 

effect of unresolved instability modes. 
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Introduction 

The purpose of this thesis is to combine the methods of Arbitrary Lagrangian-Eule- 

rian (ALE) simulation with large eddy simulation (LES), and to explore the advantages 

of the combination. Rayleigh-Taylor instability simulation has been studied extensively. 

Simulations have been compared with mathematical theories of Rayleigh-Taylor growth 

and experimental observations. The subject of the research ranges from astrophysics to 

inertial confinement fusion (ICF). So far, studies have been carried out mainly with 

Eulerian methods. This dissertation finds that in Rayleigh-Taylor simulations of experi- 

ments such as ICF, ALE and LES are both important. ALE allows the simulation to fol- 

low the changing shape of the target, while LES approximates missing features. 

Many Eulerian simulations of Rayleigh-Taylor instability have been published by 

Youngs ([46] [72] [73] [74] [75]) and Glimm et al. ([23] [27] [28] [29] [45]). Youngs 

employed an interface reconstruction scheme to track the movement of the fluid inter- 

face across an Eulerian mesh. The interface was reconstructed from the volume fractions 

of various materials in neighboring zones. He simulated experiments conducted by Read 

[54] and Linden et al. [46]. He studied in particular the role of Rayleigh-Taylor instabil- 

ity in small scale mixing, and included a turbulence model (another name for LES) in his 

2 and 3 dimensional compressible simulations. 

The method employed by Glimm et al. is a front tracking across an Eulerian mesh. 

The front between the two fluids moves in a Lagrangian manner past the fixed grid. The 

front serves as an extra degree of freedom, in that tracking it involves solving elliptic 

PDEs at each time step. They developed statistical models for the processes of bubble 

growth and merger. They also showed that the bubble growth rate a is a renormalization 



fixed point, a universal constant. 

ALE was used to simulate Rayleigh-Taylor instability by Alon, Freed, Hecht, 

Shvarts, and others ([I] [2 l] [3 l] [52]). They employed an interface tracking scheme at 

the interface, and developed a two-phase flow model of mixing. This is a type of turbu- 

lence model, for simulations in which neighboring fluids in a grid zone have separate 

velocities. The two phase flow model approximates the drag, acceleration, mass, and 

length scale changes caused by the interaction of the two fluids. Unlike the LES in this 

study, filtering and closure approximations were not used. Simulations were conducted 

at various Atwood numbers, and 3 dimensional simulations of ICF pellets were con- 

ducted as well. 

This research addresses three questions: first, how does ALE mesh motion effect the 

simulation of Rayleigh-Taylor instability? Secondly, how does LES work with ALE? 

Mesh motion alters the definition of resolved and unresolved scales, and makes filtering 

depend on time and space. Finally, how can ALE mesh motion and LES be used together 

to improve simulations of experiments? 

To answer the questions, the simplest case was examined first. The growth of a 

resolved, single mode initial perturbation was studied with ALE mesh motion. The 

effect of varying the mesh motion was explored. When compared with higher resolution 

simulations, ALE simulations more accurately captured the instability growth and 

energy balance than Eulerian simulations. 

Next, the behavior of the LES was studied in a more complicated ALE simulation 

with a perturbation composed of several resolved modes. A more complicated interface 

evolved due to mode coupling. The performance of the LES was similar with ALE and 



Eulerian mesh motion. However, the ALE mesh motion could be coupled with the LES 

to increase resolution where needed. 

Simple simulations show the behavior of LES in an ALE simulation, while more 

complicated simulations of experiments show where ALE and LES are most useful. Sto- 

chastic backscatter was combined with LES to represent unresolved modes in the initial 

perturbation. The ALE method was important in following the changing shape of an 

experimental target. These simulations illustrate the importance of both ALE mesh 

motion and LES in simulation of Rayleigh-Taylor instability experiments. 



ALE Simulation of Rayleigh-Taylor Instability 

This chapter investigates the use of the Arbitrary Lagrangian-Eulerian (ALE) method 

in simulations of Rayleigh-Taylor instability. The purpose is to determine the best way 

to use ALE to improve simulations. 

1.0 Motivation for ALE 
In computational simulations, a Lagrangian grid moves with the material being simu- 

lated. An Eulerian grid remains stationary while the material moves past it. An ALE 

method combines Lagrangian and Eulerian simulation techniques. 

Lagrangian simulations describe material interfaces and domain boundaries very 

well, since the grid follows the changing shape of the material. There is no need to deal 

with mixed zones, which contain more than one material. Grid points cluster in areas of 

large gradients, such as shocks. Fewer grid points are needed elsewhere, so the method 

can be computationally faster than the Eulerian method. But the grid cannot follow all 

material motion. A simulation cannot continue if mesh lines cross and create singular 

points. Also, derivatives become increasingly inaccurate as the zones become less uni- 

form. 

An Eulerian mesh can describe any flow, no matter how twisted. Since the Eulerian 

mesh doesn’t follow the flow, a uniform orthogonal mesh at the beginning of the prob- 

lem will still be uniform and orthogonal later on. This makes approximating derivatives 

much simpler. But Eulerian grids contain mixed zones, which require extra time and 

storage. Extra grid points are needed to simulate structures that move across the grid. 

Otherwise information can be lost between grid lines. This makes Eulerian problems 



computationally slower. Eulerian simulations also suffer higher numerical dissipation. 

ALE has several advantages over pure Lagrangian or pure Eulerian simulations. It 

can adapt to local flow conditions, moving in a Lagrangian fashion in areas where fluid 

motion is less, and remaining fixed in areas where fluid motion is greater. In between, 

the mesh follows the flow part way, but not enough to tangle. The disadvantage of ALE 

is greater advection error relative to Lagrangian simulations, but smaller advection error 

relative to Eulerian simulations. Also, greater computational effort is needed over 

Lagrangian or Eulerian simulations. 

Eulerian mesh 

ALE mesh 

Lagrangian mesh 

Figure 1: Mesh motion 

2.0 History of ALE 
In the1960’s methods of simulating material motion with a moving mesh were first 
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developed. Moving the mesh along with the material being modeled is useful for some 

flows. Wilkins [69] created an early Lagrangian code to describe elastic-plastic flows. 

Lagrangian codes are still used to simulate materials that do not deform enough to cause 

mesh lines to cross, but this is rarely true of fluids. 

Several combinations of Eulerian and Lagrangian meshes were attempted. Frank and 

Lazarus [20] tried a mesh that was Eulerian in the vertical direction and Lagrangian in 

the horizontal direction. Noh [5 I] tried a mesh that was Eulerian in some portions and 

Lagrangian in others. Some Lagrangian codes were stopped in order to untangle the 

mesh and then resumed. 

Systematic ways to combine the Eulerian and Lagrangian concepts of mesh motion 

were developed to alleviate the need for stopping a simulation in progress. When 

Lagrangian simulations were stopped in mid flow to untangle the mesh, inaccuracies 

occurred in adjusting the material to fit the new mesh. A method of advecting material 

past grid lines was clearly needed, to redistribute the physical quantities on the new 

mesh without altering the physics of the flow. Accurate second order advection schemes 

were developed by Roe [55], and Van Leer [67]. 

Automatic ways to adjust the grid in mid flow eliminated the need for stopping the 

simulation to undo grid tangles. The mesh is moved by employing a transformation 

between a uniform orthogonal mesh and the nonuniform, nonorthogonal mesh arising 

from the simulation. An algebraic transformation can be used, or an elliptic partial dif- 

ferential equation [ 171. 

In 1972 the ALE method was described by Hirt, Amsden, and Cook [33]. Many 

ALE codes have followed, using finite element and finite volume methods to approxi- 



mate the equations of motion. 

An ALE simulation adds an extra velocity to the equations of motion in the form of 

d mesh velocity. The Lagrangian time derivative - is related to the Eulerian time deriva- 
dt 

tive at if- by 

d d+u.v -= 
dt at (EQ 1) 

where u is the fluid velocity. If the mesh velocity is v , the ALE time derivative is 

related to the Lagrangian time derivative by the following relationship: 

d -= 
dt 

&+(u-v).V @Q 2) 

This creates a set of ALE equations of motion similar to the Eulerian equations of 

motion. 

However, in the method used in this study the grid velocity is not prespecified. 

Instead the grid must be tested at each time step, to determine if it is in danger of tan- 

gling. Nodes are tested individually, so some may move while their neighbors remain 

fixed. This makes it impossible to solve the ALE time derivatives in EQ 2. Instead, the 

motion of the mesh is calculated at each time step, separately from the solution of the 

equations of motion. 

3.0 The ALE Method 
The ALE method in this study consists of two phases: The Lagrangian phase and the 

Eulerian phase. In the Lagrangian phase, the Lagrangian equations of motion EQ 3 - EQ 



5 are solved with the mesh following the fluid. Then, in the Eulerian phase, the grid is 

relaxed to a new position and the material is advected between zones in response to their 

new locations. 

3.1 The Lagrangian phase 

In the Lagrangian phase of the ALE method, the Lagrangian equations of motion are 

solved using a second order accurate predictor-corrector scheme. The inviscid equations 

of motion in Lagrangian coordinates are: 

ldP= 
pz 

-VW 

&-Vp+pg 

p$= -pV.u 

@Q 3) 

(EQ 4) 

d where Z = at -?- + u l V is the Lagrangian derivative, p is the density, u is the velocity 

vector, g is the gravitational acceleration, e is the internal energy, and p is the pressure, 

given in this case by the ideal gas law p = (y- 1)pe where y = 5/3. Details of the 

solution to the equations of motion are found in Appendix B, Section 4.0 on page 111. 

3.2 The Eulerian phase 

In the Lagrangian step, the mesh moved with the fluid, but now parts of it may need 

to be moved back, to reduce the distortion of the grid. This preserves accuracy and 

allows the program to continue to follow a complicated flow in the next time step. 

First, a new grid is chosen, using information from the old grid, to represent the flow 
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more accurately in the next Lagrangian step. This is the grid relaxation step. Then the 

physical variables must be redefined in response to the new position of grid points in the , 

fluid. This is the remap step, which employs various advection approximations. These 

two processes are referred to as the Eulerian step. 

Although the fluid does not advance in time during the Eulerian step, approximations 

are made when the physical variables are defined on the new grid. Therefore, mass 

momentum and energy may change during the Eulerian step. 

3.2.1 Grid Relaxation 
A new grid is found by an equipotential relaxation method[63]. A description of grid 

relaxation can be found in Appendix C. 

3.2.2 Remap 
Once the new grid is chosen, mass, momentum, and energy need to be redistributed 

into the new zones. Using + to represent any zone centered quantity and V to represent 

the zonal volume, a one dimensional remap is shown in Fig. 2 . 

neighbor zone donor zone acceptor zone 

i 

I 
1 S~,SV 
I 
I I 

$3, v3 

Figure 2: Remap 
The new quantities (denoted by primes) are calculated as follows: 
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V;.& = V,.p,+6V.&p and Vi.@; = V,.p,-6V.&p @Q 6) 

The value of S@ is found by a second order approximation of the derivative in 

S@ = cp +3 (x-x) 2 ax 0 
x0 

(EQ 7) 

where x0 is the physical center of 6V. The value of @I is subject to monotonicity con- 

straints. That is, the process of moving material from one grid zone to another must not 

create any new maxima or minima in the physical properties of the flow. Monotonicity 

constraints reduce the order of the approximation to first locally where needed. 

Two second order advection schemes or slope limiters [42] are used in this study: the 

“Superbee” limiter of Roe [55] and the van Leer [67] slope limiter. We also consider a 

scheme in which advection is a first order approximation everywhere. 

4.0 ALE Variations 
In order to determine how ALE can best be used to improve Rayleigh-Taylor instabil- 

ity simulations, different ALE parameters were modified. As can be seen from previous 

sections, there are many possible modifications to ALE mesh motion. Table 1 lists the 

parameters that will be discussed in later sections. 
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Table 1: ALE variations 

ALE Variation 

Lagrangian Step Variations 

Default Range 

#Lagrange steps between remap steps 

I Grid Relaxation Variations I I I 

angle test for grid relaxation 60” 1 O-90” 1 

area test for grid relaxation 1 0.05 1 0.0-0.25 1 

#iterations in relaxation 

multiplier for maximum distance 
relaxer can move 

1 

4.0 

material relaxation weight 

#times relaxation weights are averaged 
with neighboring weights 

1.0 

1 

#I times replace local weights with largest 
of nearest neighbors 

1 

Advection Variations 

l--M 

l--M d I--m 

Advection Method: 72,or3 

I 1 x then y this time step, y then x next time step I I -1 
I 2.halfx,fully,finishx I I I 

3. zone by zone 

Advection Scheme: 2 __I 1,2,or 3 

I 1. Roe Superbee. advection I- 1 
2. Roe Superbee for momentllm and Van Leer for scalar 

advection 

I 3. first order advection I I -1 

5.0 Single mode Rayleigh-Taylor instability test problem 
The following test problem was used to determine how ALE mesh motion effects the 

growth of a single mode Rayleigh-Taylor instability. An ideal gas of density 2.0 was 

placed above an ideal gas of density 1 .O in a square domain 0 I x, y 15 10 . A uniform 

downward gravitational field of magnitude 1 .O was assumed. Boundaries were reflect- 

ing. The fluid interface had the following initial shape: 
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Y (EQ 8) 

where the wavelength h was taken to be 2.0 (see Fig. 9 ). Initially the pressure gradient 

balanced gravity in the y direction. 

time 0 microsec time 10 microsec 

The default values are shown in Table 1. 

The Rayleigh-Taylor bubble and spike must be defined and tracked over time to 

determine their growth rates. An interface reconstruction method was used [64]. The 

slope of the fluid interface was determined from the amount of each material in each 

zone and its neighboring zones. The intercept of the material interface with the edge of 

the zone was not calculated however. 

In order to determine the location of the bubble and spike fronts in the presence of 
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ALE mesh motion over time, a vertical scale was set up initially. The scale was the 

same height as the domain, and was divided into as many bins as there are grid zones in 

the vertical direction. The vertical position of each zone placed it in a particular bin on 

the vertical scale (see Fig. 4 ). The mass of each material in each zone was added to the 

total for that bin, so mass fractions could be defined along the vertical scale. This way, 

the location of the bubble and spike fronts were located according to a vertical scale 

which did not move as the mesh moved. 

The mass fraction of both materials was considered in each bin, starting from the top. 

The actual location of the interface was defined as the center of the bin where the upper 

material fell below 95%, and the spike front was defined as the center of the bin where 

the upper material fell below 5%. Consequently, for low resolution simulations, plots of 

the interface position over time had a stair step appearance. Smooth plots of the instabil- 

ity growth were created by fourth order polynomial interpolation. 

bubble 

spike + 

The mesh resolution had a great effect on the Rayleigh-Taylor growth rate. It took at 
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least 4 zones per wavelength to resolve a mode. However, the growth rate approached a 

uniform value above a resolution of 50x50 zones (see Fig. 5 ). 

bubble 
height 
(cm) 

6.50 

6.00 

0.00 5.00 iQ.OC 
,1__^_ 1”“,,_,1_“^ ,,,~__-,,,“-,,,“--, ,” ,,,,- I_, time (micro set) i- 

,, ,,,“_ 
.._ -...l _, ,“,” 

5.1 Comparing ALE to Eulerian mesh motion 

The ALE method in this study can be modified to create a two step Eulerian simula- 

tion. The Lagrangian step remains unchanged, but in the remap step the mesh is returned 

to its original position. In all calculations, the “reference” solution was obtained by 

computing the Rayleigh-Taylor problem using this two-step Eulerian method on a 

200x200 grid. 

Rayleigh-Taylor growth in ALE simulations was not dramatically different from 

Eulerian simulations. However, early in the simulation ALE mesh motion allowed 
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slightly faster instability growth than Eulerian, which made it more accurate in compari- 

son to the higher resolution Eulerian simulation. 

J,,,,,,,,,,,,,,,,,,,I,,,,,,,,,,,,,,,,,,,I 

bubble 7.50 1 
height 
(cm) 

Eulerian 50x50 

~,‘,,“‘,,,““‘,,,‘,“““““““‘,“‘I- 

0.00 5.00 10.00 

time (micro set) 

5.1.1 Energy Balance 
When the mesh moves, some energy is lost due to advection approximations. Both 

ALE and Eulerian simulations lose energy due to advection, since both use a Lagrangian 

and an Eulerian step. Over the course of the simulation, internal and potential energy 

are converted to kinetic energy. The materials are initially in equilibrium, with the 

heavier fluid balanced by the light fluid against the acceleration. As instabilities grow, 

the heavier fluid falls past the light fluid, reducing potential and increasing kinetic 

energy. ALE simulations captured the conversion of potential energy to kinetic better 

than Eulerian simulations at low resolution. 
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ALE simulations also captured the conversion of internal energy to kinetic better than 

Eulerian simulations at low resolution. Initially, the problem was balanced so that the 

pressure gradient was constant throughout the domain, and balanced gravity. This means 

the internal energy of the less dense material was higher than the internal energy of the 

more dense material. Both materials became hotter toward the bottom of the domain. 

The resulting changes in internal energy are better captured by ALE. The increase in 

kinetic energy was also greater for ALE mesh motion than for Eulerian. Therefore, ALE 
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improved the ability of a simulation to capture unresolved kinetic energy. 

0.00 (b) 5.00 

70.00 : 5: 

is 
\ 

69.90 I 69.80 : 

69.70 ; 

-L 
0.00 

ALE mesh motion captured instability growth and the partitioning of energy into 

internal, kinetic and potential energy better than Eulerian mesh motion. Many parame- 

ters can be changed to alter the way ALE works. The parameters effecting ALE were 
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modified one at a time to determine their effect, if any, on the growth of the instability. 

For the most part, this effect was minimal. 

5.2 The effect of the Lagrangian step on Rayleigh-Taylor growth 

In the Lagrangian step, the equations of motion are solved on the mesh which moves 

to follow the fluid. This step can occur one or more times between remap steps, in 

which the grid is moved past the fluid. Allowing Lagrange subcycling can increase bub- 

ble growth, since the mesh follows the fluid more closely with fewer remaps. In the case 

7.00 

6.50 

6.00 

J ,,Puw,,,,, ,&S ,,Puw,,,,, ,&S Reference Reference 

1 Lagrange step per remap 

ALE 50x.50: 
10 Lagrange steps max 

per remap 

time (microsec) 

where the maximum number of subcycles was 10, the actual number of Lagrange steps 

per remap was only 10 in the early part of the simulation. The mesh followed the fluid 

in a more Lagrangian fashion until it started to become tangled, and the number of 

Lagrange steps was reduced. The result was more accurate bubble growth. 
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5.3 The effect of grid relaxation on Rayleigh-Taylor growth 

Solving the equations of motion in a Lagrangian frame of reference allows an ALE 

mesh to move in response to fluid motion. This improves simulations of complicated 

flow patterns such as Rayleigh-Taylor instability. However, mesh distortion must be lim- 

ited since spatial derivatives become inaccurate on a distorted mesh. If the mesh were 

orthogonal, spatial derivatives would be tied to Cartesian spatial derivatives. The deriva- 

tive of a zone centered quantity would logically be located at the center of the zone face 

separating two zones. For a non-orthogonal mesh, the spatial derivative of a zone-cen- 

tered quantity is assumed to be located at a node, and the derivative of a node centered 

quantity is assumed to be located at a zone center. If a node does not fall in the center of 

the surrounding zones, inaccuracy is introduced. Therefore, the extent of mesh motion 

must be limited. 

The first step in grid relaxation is to determine which nodes need to move and which 

do not. Each node is tested individually against two criteria. An angle test compares the 

smallest angle of the four surrounding a node. The sine of this angle is compared to a 

threshold angle. In 3 dimensions, a similar test compares the solid angles surrounding a 

node. 
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fit the shape of the interface better when small angles were allowed. 

q = 90 deg q = 14.48 deg 

Early in the simulation this made the instability growth more accurate, as can be seen 

in Fig. 12 . But as time went by, the mesh distorted along with the interface, and the 

instability growth exceeded the more accurate high resolution growth. Reducing the 

threshold angle made the simulation more Lagrangian, and so the mesh became tangled. 

The area test had a similar effect. The area test compares the area of the smallest of 

the four triangles surrounding a node to the sum of the areas of all four triangles. A sim- 

ilar test in 3 dimensions compares the volumes of the tetrahedra surrounding a node. 

When the threshold area Q was reduced, an instability could grow faster since the grid 

distorted further. The area test had far less effect than the angle test however, since it did 

not allow grid zones to distort to match the shape of the interface as well. 
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Once the grid nodes are separated into those that will remap and those that will not, 

the motion of the moving nodes can be effected by several parameters. The solution to 

the grid relaxation equations (EQ 88 and EQ 89) is taken iteratively. Each iteration 

brings the mesh closer to the exact solution of the grid relaxation equations. Increasing 

the number of iterations in the solution caused a slight increase in the instability growth. 
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Restrictions can be placed on the distance a grid node can move in one time step by 

setting a constant factor. During the Lagrangian step, each node moves a distance I, to 

follow the fluid. The grid relaxation algorithm sets a distance I, that the node should 

move, perhaps in another direction. The grid relaxation multiplier Y is used to limit the 

distance (but not the direction) a node actually moves. If I, > rlt then I, = rZt . The 
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parameter Y is set for each material region. The typical value of Y is 4, but reducing it to 

1 increased Rayleigh-Taylor growth. The zones moved a shorter distance when they 

were remapped, which kept them closer to their positions after the Lagrangian step. 

Increasing the factor to 8 had less effect. 

Regional weights can be used to keep zones in particular parts of the simulation. 

These weights are applied as factors in the weight functions Wi in EQ 88 and EQ 89. In 

the Rayleigh-Taylor test problem used here, a higher relative weight in one material 

made nodes stay in that material. 
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The mesh for the two cases in Fig. 14 can be seen in Fig. 15 . More nodes remained 
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5.4 The effect of remap on Rayleigh-Taylor growth 

Various advection approximations can be used to move material between zones in 

response to mesh motion. The Van Leer and Roe Superbee advection schemes are both 

second order, except when monotonicity constraints force them to be first order. These 
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are compared to a strictly first order method. The default advection scheme combined 

bubble 

height 
(4 

(cm) II 

7.50 - Eulerian 200x200 
<’ - ,,\ ,,,, ,,,,. ~ _’ 

default advcclion 

ALE 50x50 

7.00 i 
default advcction 

1,-- ALE 50x50 
Roe Superbcc advccliol 

6.50 i _ _ _ . . . ALE=j@& 
first order advcction 

6.00 : 

-._ -I- . ..#< 
~'~"""""","",',,,,,,~',,~,,,,,,, 

0.00 5.00 time (micro set) 10.00 

energy 

(% of total) (b) 

Eulerian 200x200 
default advection 

ALE 50x50 
default advection 

ALE 50x50 
Roe Superb-s advection 

ALE 50x50 
first order advcction 

I”.“““““““” 

5.00 
time (microsec) 

10.00 

Roe Superbee advection for momentum and Van Leer advection for scalar quantities. 

The bubble growth was greater early in the simulation and less later in the simulation 

for the second order schemes than for the first order scheme. However, the first order 

scheme converted less internal and potential energy to kinetic energy, making it less 

accurate in the balance of energy. Roe advection was in general more accurate than the 

default combination. 

The order in which advection occurs in the x and y directions can also be modified 

[62]. There are three possible schemes: 

1. In one time step advection occurs throughout the domain in the x direction, then the y 
direction. In the next time step, advection occurs in the y direction, then the x direc- 
tion. 
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2. Advection is performed in the x direction halfway. Then advection occurs in the y 
direction, after which the advection in the x direction is finished. 

3. Each z&e is advected separately. Advection in the x and y directions are calculated 
simultaneously, and corner coupling is lost. 

As can be seen in Fig. 18 , these schemes made very little difference in total energy loss 

for the test problem. 
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6.0 Conclusions 
This chapter shows the advantages of the ALE method in Rayleigh-Taylor simula- 

tion. Compared to a two step Eulerian method, the ALE technique made a low resolu- 

tion simulation closer to a higher resolution Eulerian simulation. For the entire domain, 

the partitioning of kinetic, potential, and internal energy, as well as the bubble growth 

rate, were all more accurate at lower resolution for the ALE simulation. 
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Modifications to ALE were made in the Lagrange step, the grid relaxation step, and 

the remap step. Several changes in the ALE method caused improvement in the instabil- 

ity simulation relative to the reference case, an Eulerian simulation with 4 times greater 

resolution. The modifications that had the greatest effect were those that controlled the 

amount of ALE mesh motion. The mesh could move locally in a more Lagrangian or a 

more Eulerian fashion, according to local conditions. If the mesh was allowed to follow 

the fluid in a more Lagrangian fashion, the measurement of instability growth was 

improved. But where the mesh followed the fluid too closely, mesh distortion became a 

problem. Therefore, ALE is a compromise between a fixed mesh and one that moves 

with the fluid. 

In the Lagrange step, an increase in the ALE simulation’s instability growth occurred 

when Lagrange subcycling was allowed. The grid relaxation step effected the shape of 

the instability as it grew. Allowing greater grid distortion by varying the angle test 

caused faster growth but distorted the interface. Increasing the iterations in the grid 

relaxation algorithm made relaxation more non-local, and increased instability growth 

slightly. Restricting the distance a node can move in the relaxation step increased insta- 

bility growth even more. Regional weights also caused grid distortion, which was mini- 

mized by replacing or averaging neighboring weights. The choice of a first order 

advection scheme increased instability growth, but also increased the loss of kinetic 

energy due to advection. 

The use of ALE mesh motion improved the simulation of Rayleigh-Taylor instabili- 

ties. However, ALE and Eulerian simulations were quite close to each other, and the 

greatest improvement came with increasing resolution. Therefore in cases where high 
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resolution cannot be achieved, ALE can make an improvement in Rayleigh-Taylor simu- 

lation. 
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Large Eddy Simulation and ALE 

The previous chapter examined the usefulness of the Arbitrary Lagrangian-Eulerian 

(ALE) method in simulations of Rayleigh-Taylor instability with a single initial pertur- 

bation mode. This chapter investigates the behavior of a large eddy simulation (LES) in 

a similar Rayleigh-Taylor simulation with ALE. A multimode initial perturbation is used 

instead of the simpler single mode initial perturbation, in order to create more unre- 

solved features. LES is intended to describe unresolved kinetic energy in the simulation. 

7.0 Motivation for LES 
When the equations of motion for fluid flow are solved numerically on a grid, it is 

often impossible to resolve all relevant scales. LES uses a subgrid scale model to 

approximate the energy in the turbulent eddies which are too small to be resolved by the 

grid. Without a subgrid scale model, the simulation misses all features of the flow that 

cannot be resolved by the grid. 

In turbulent flow, the fluid moves in circular eddies. Eddies can range in size from 

the width of the flow to the tiny scale at which the viscosity of the fluid damps fluid 

motion and converts it to heat. The smallest scale at which a turbulent eddy can exist is 

known as the Kolmogorov microscale [65]. Due to vortex stretching, large eddies 

become smaller, until they reach the Kolmogorov microscale. It takes several grid zones 

to describe a turbulent eddy. The grid spacing is usually far larger than the Kolmogorov 

microscale, so the conversion of kinetic energy to heat will be missed. 

By dimensional analysis, the Kolmogorov microscale h is related to the viscosity v 
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. The dissipation rate is 

related to the largest significant length scale in the flow, L , by E - u3/L where u is a 

characteristic velocity of the flow. Therefore, 

To resolve the smallest relevant scales in the flow, a simulation needs at least R3’4 

zones per dimension, where R is the Reynolds number of the flow. This means R 6/4 

zones are needed for two dimensional simulations and R9’4 zones are needed for three 

dimensional simulations. With turbulent flows having Reynolds numbers in the thou- 

sands or higher, it is clear that resolving all scales in simulations of turbulent flows is 

usually too large a problem for today’s computers. 

In LES, a subgrid scale model approximates the energy in the turbulent eddies which 

are too small to be resolved by the grid. The turbulence acts like viscosity, dissipating 

energy from the mean flow. So subgrid scale models often include an eddy viscosity 

which is added to the molecular viscosity of the fluid. As the mesh spacing becomes 

smaller and approaches the Kolmogorov microscale, the eddy viscosity disappears, leav- 

ing only the molecular viscosity. This means that as the grid spacing goes to zero, the 

LES becomes a direct numerical simulation (DNS), in which all flow scales are 

resolved. 



33 

8.0 History of LES 
Many subgrid scale models have been developed. One of the most well known is the 

Reynolds Stress model [65]. This defines each component of the velocity ui as the sum 

- 
of a mean component ui and a fluctuating component ui . 

- 
‘i = Ui+ Ui 

The mean component is a time average defined as 

(EQ 11) 

- 
Ui = 

(t+T) 
uidt @Q 12) ’ 

The entire momentum equation is averaged to find the relationship between the mean 

and fluctuating velocities. The mean velocity is constant in time, and the average of the 

fluctuating velocity is zero, so i = U and 2 = 0. All correlations between mean and 

fluctuating terms disappear. The fluctuating velocity enters the momentum equation (EQ 

13) as the Reynold’s stress puiujl . 

pvw = - vp + V.@Eij - pui’uj’) + pg (EQ 13) 

The Reynolds stress represents a new unknown quantity in the equations of motion. 

The mixing length model [68] represents the effect of a turbulent eddy moving with 

respect to the mean flow. The Reynolds stress is approximated from mean quantities. 

PU,‘U 
2a-a- 

y’ - Pl $5 &-ux I I 
(EQ 14) 

The “mixing length’ I represents the size of a characteristic turbulent eddy. The eddy 
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kinetic 
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Fig. 19: Eddy viscosity converts kinetic energy to internal at the grid scale, not the unre- 
solved Kolmogorov microscale. 

In numerical simulations, some scales can be resolved and some cannot. It makes 

sense to divide the flow into resolved and unresolved components, rather than mean and 

fluctuating components. Many subgrid scale models of this type have been developed. A 

filtering operation can be used to divide the variables into resolved and unresolved com- 

ponents, as the Reynolds time average divides the flow into mean and fluctuating com- 

ponents. 
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However, unlike Reynolds averaging, correlations between large and small scale 

components do not disappear, which leads to additional terms in the equations of 

motion. Each additional term represents an unknown quantity without an equation asso- 

ciated with it. This is the closure problem of turbulence theory. Closure problems are 

addressed with further approximations, and the equations of motion are redefined. A set 

of equations describing the flow down to the grid scale is created to look like the equa- 

tions of motion for a DNS as much as possible. Another equation of motion describing 

the subgrid scale kinetic energy is then added. 

Various averaging techniques can be used to separate the equations of motion into 

large scale and subgrid scale components. The physical parameters of the system (den- 

sity, velocity, and energy) are defined as the sum of large and subgrid scale components: 

f = ( f) + f’ . The large scale components are separated from the subgrid scale compo- 

nents by a convolution product with a filter function G(x). 

‘,fk 0) = j- j I G(x - WW Wx’ 
-co--00-c-3 

(EQ 15) 

the function G(x) should be symmetric, disappear at +m and normalize to one. The fil- 

ter is assumed to have the property that f(x) = f( x w ) h enever f(x) is a constant. This 

assumes that r G(x)dx = 1. Note that if we let x -x’ = s , then 
-cc 

&G(s, t) = g& = -($G(s, t)) and &G(,, t) = Fg = $G(,, t) so that 
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(EQ 16) 

If G disappears at ?PJ, EQ 16 can be used to show that the filter commutes with spatial 

derivatives[49]. 

af- 
r ax e-W 

G(x - x’)(-&f(x’;t))dx 

= G(x - x’)f(x’, t) II - 
JI( -ccl 

&G(x -x+(x: t)dx’ 

= ;j; G(x - x’)f(x’, t)dx’ 
c-3 

@Q 17) 

However, this argument breaks down in cases where G is not continuous, as with the 

step function in EQ 19. 

Two common choices for G(x) are the Gaussian and the step or top hat function, 

which use a length scale h as the cutoff length between large and subgrid scales. For 

example: 

1 
Gaussian: G(x) = =exp 

n h 

Step function: G(x) = 

(EQ 18) 

@Q 19) 

The convolution product of the function f(x, t) and the filter function G(x) is equal 

to the inverse transform of the product of their Fourier transforms j(k, t) and G(k). 

Therefore the behavior of the filter function in wave number space indicates which con- 

stituent modes of the function survive filtering. In one dimension, taking h to be 1, the 
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two filter functions in EQ 18 and EQ 19 and their transforms are shown in Fig. 20 . 

The Gaussian filter has a similar Gaussian transform, which is not uniform in magni- 

tude for all wavenumbers. This filter function emphasizes the smallest wavenumbers in 

the filtered function. The step function cuts off sharply between resolved and unresolved 

space, giving all resolved space equal magnitude. But in wavenumber space, fluctuations 

make some modes positive and others negative. Also, the step filter does not commute 

with spatial derivatives since it is not continuous. The Gaussian filter does commute with 

spatial derivatives. 
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Fig. 20: Possible filter functions and their Fourier transforms (with length scale = 1). 

An alternative approach to LES is to examine the problem in wave number space 

rather than physical space. The equations undergo Fourier Transform and the size of the 
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component modes which describe the flow can be examined. Again, a filter function can 

be created to separate the flow into resolved and unresolved components by wavenum- 

ber. It is clearer which are large enough to be resolved and which are not. However, the 

same issues exist in choosing a filter function. 

The order of a subgrid scale model is given by the number of new equations of 

motion which must be solved beyond the original three. A zeroth order model, such as 

the Reynolds Stress model or the Smagorinsky model [60], has no additional equation of 

motion but calculates the eddy viscosity from resolved quantities. The Cloutman model 

[ 121 uses one additional equation of motion for the subgrid scale kinetic energy k . The 

filtering length scale is proportional to the grid size. This is a first order model. Second 

order models contain a second variable quantity, such as dissipation of kinetic energy E 

or a turbulent length scale h , along with a second additional equation of motion. The fil- 

tering length scale is no longer tied to the grid, but to the new variable. The relation 

between dissipation and length scale is given by E - k3’2/h in the inertial subrange. 

This thesis applies LES to simulations that are unusual in several ways. Subgrid 

scale modeling was created for turbulent flows, but here they are applied to flows that 

are not yet turbulent but in the unstable stages before turbulence has developed com- 

pletely. The goal is to use LES as subgrid scale simulation, and improve the accuracy of 

instability modeling. Also, ALE mesh motion causes the filter definition to vary in 

space and time. This introduces errors in LES. The importance of those errors is exam- 

ined in a simple test problem. 
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9.0 Equations of motion 
In the Lagrangian step of the ALE method, the grid moves with the fluid. The equa- 

tions of motion are solved for one time step. This is done predictor corrector for second 

order accuracy (see Appendix B Section 5.0 on page 116). The equations in Lagrangian 

form are: 

Conservation of Mass* I*= 
. pdt 

-VW (EQ 20) 

Conservation of Momentum: p$ = - VP + VW&$ + Pg @Q 21) 

Conservation of Internal Energy: p$= Vo(tcVT) - pV.u + J~E~~:VU 

Definitions: 

@Q 22) 

d a -= - + u l V Lagrangian derivative 
dt at 

t time 

p density 

u velocity vector 

p pressure: in this case, the ideal gas law is used p = (y - 1)pe where y = z 

dUi du. 
E J 2 

lJ ax 
. . = - -t - - -VWSij strain rate tensor 

j axi 3 

v = p/p kinematic viscosity of the fluid 

g gravitational acceleration 

e internal energy per unit mass 
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K internal energy diffusivity 

T temperature: T = e/c,, in this case 

5 = $ heat capacity at constant volume 

10.0 Cloutman model 
The Cloutman model [ 121 creates a single equation for subgrid scale kinetic energy. 

This is solved along with the filtered equations of motion at each time step. To find the 

filtered equations of motion, the unfiltered equations undergo a convolution product with 

a filter function (see EQ 15). The filter function G(x - x’) is not specified, but a Gauss- 

ian is one possibility. The filtering operation is assumed to commute with time and 

space derivatives. The resulting filtered equations, in Eulerian form, are: 

Conservation of Mass: i(p) + V.(pu) = 0 (EQ 23) 

Conservation of Momentum: 

g(P”) + V”(Puu> = -‘(P) + V”tpEij) + (Pg) 

Conservation of Internal Energy: 

(EQ 24) 

;(pe) + V.(pue)= V+VT) - (pV.u) + (~E+VU) (EQ 25) 

Two separate averages are defined for this model. The regular average is written in short- 

hand form as (f) = 7. A mass weighted average is defined as 

f = (PfV(P) @Q 26) 

so that (pf) = cf. F or all variables except p and p , filtering is mass weighted so 

f = f + f’ . For p and p filtering is not weighted, so f = f + f’ . Because of the 



43 

mass weighting, cr> f f since p is not constant. 

A new equation with a new time dependent variable is added to the filtered equations 

of motion. The new variable is the turbulent kinetic energy per unit mass, k . Turbulent 

kinetic energy is also called subgrid scale kinetic energy, which is a more accurate term 

in simulations that are not fully turbulent. 

To obtain the new equation, the filtered kinetic energy equation is subtracted from the 

unfiltered kinetic energy equation. The unfiltered kinetic energy equation is found by 

taking the dot product of the unfiltered velocity with EQ 21 and rearranging terms: 

-gPK) = - u . vp + u . (V.(FEij)) + u l pg (EQ 27) 

K = 1 (u l u) is the unfiltered kinetic energy. The filtered kinetic energy equation is 
2 

obtained by taking the dot product of the filtered velocity with EQ 24, and rearranging 

similarly: 

$2) = -u.V(p)+li.(V.(Cleij))+S. (pg) (EQ 28) 

K = i (li l U) is the filtered kinetic energy. 

Many approximations are made to simplify the filtered equations of motion and the 

subgrid scale kinetic energy equation. Closure approximations are adopted to treat 

unknown correlation terms. This particular subgrid scale model is intended to be as sim- 

ple as possible, to minimize computational effort. 

The left side of the filtered momentum and energy equations contain triple products 

with p and u . These can be expanded to: 



44 

(puf) = p(uJ+G+uf’+u’f’) (EQ 29) 

Zero is added to the right hand side of this equation in the form of buf - filif , and the 

terms are redistributed. 

(puf) = i;E~+j3((E-&i~)+~+lif’)+~u’f (EQ 30) 

The Leonard terms (G - ET) and the cross terms (FT + Eif’) are neglected in this 

model. For some choices of filter, the Leonard terms are equal to zero. If the distribu- 

tion of the fluctuations f’ is Gaussian, then f” = 0 and therefore (f) = f, so the cross 

terms also vanish. In cases where the Leonard and cross terms do not disappear, several 

closure approximations have been used for them [7][42][49]. These are not employed 

here, for the sake of simplicity. 

The flux gradient approximation is used for subgrid scale correlation terms. This 

assumes the transport length scale must be small compared to the length over which the 

gradient of the transported quantity is significant [ 141. 

f’u’= -D,Vf @Q 31) 

The turbulent diffusivity D, depends on what f is: for velocity, D, is viscosity &. For 

Pt internal energy, D, is thermal diffusivity given by Pr . The turbulent Prandtl number 
t 

Pr, is taken to be 0.7. This value is the Prandtl number for an ideal gas, so the subgrid 

scale turbulent eddies are assumed to be homogeneous and isotropic. 

The flux gradient approximation is used in the viscous heating term in the model for 

the Reynolds stress tensor. 
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&zj = - PtGij + ~t~j (EQ 32) 

The turbulent pressure is given by pt = 
2- ?p k , assuming the subgrid scale turbulence 

2 
behaves like an ideal gas, where pressure is p = ?p e . The turbulent viscosity is given 

by dimensional analysis as pt = Ap$kh , where A is an arbitrary constant and h is the 

grid scale. 

Sink and source terms are formulated to describe the creation and destruction of tur- 

bulent kinetic energy. They appear with opposite signs in the turbulent kinetic energy 

and internal energy equations, to preserve energy conservation. 

A term for the dissipation of turbulent kinetic energy comes from the Kolmogorov 

energy spectrum [65]. This assumes E( 6) - ~~‘~1~~‘~ in the inertial subrange above the 

Kolmogorov microscale. E is the dissipation rate of turbulent kinetic energy, c = 1 /h 

is the wavenumber, and E is kinetic energy density such that k = feds - ~~~~~~~~~ 

k 3/2 

Solving for the turbulent dissipation rate, E - h [2]. The term for the dissipation of 

3/2 

turbulent kinetic energy is Dbk~ , where D is an arbitrary constant. 

A term to represent the creation of turbulent kinetic energy due to buoyancy, 

, was developed by Cloutman [12]. Since buoyancy causes instability 

only when Vp . Vp < 0, this term is set to zero if it is positive. B is an arbitrary constant. 
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Molecular viscosity is neglected because it is assumed to be much smaller than turbu- 

lent viscosity. This implies the grid scale will always be much larger than the Kolmog- 

orov scale, at which molecular viscosity becomes significant. Also, terms involving 

gravitational fluctuations in the turbulent kinetic energy equation are neglected. 

This set of approximations is rather extreme, and many more complicated LES tech- 

niques have been developed for other studies. But the Cloutman model was judged to be 

useful in examining the effect of ALE mesh motion on subgrid scale energy, and its con- 

sequences to Rayleigh-Taylor instability simulation. 

10.1 New equations of motion 

The new equations of motion, back in Lagrangian form, are: 

Conservation of Mass: ;p= -pvefi 

Conservation of Momentum: 62, = - V(j + pt) + V*((p + pt)Eij) + bg 

Conservation of Internal Energy: 

‘dt 
-d,= V.(KV~;) + V.(lc,VZ) - jX.ii + jeGij:VU + SINK - SOURCE 

Conservation of Turbulent Kinetic Energy: 

pi= V.((~ + cLt)Vk) -p,V.ii + ~,Eij:Vii - SINK + SOURCE 

3 
z 

SINK = Dj+, 

SOURCE = -BP@. !fjf < o 

2- 
Turbulent Pressure: p, = 3 pk 

(EQ 33) 

@Q 34) 

(EQ 35) 

@Q 36) 

(EQ 37) 

@Q 38) 

(EQ 39) 
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Turbulent Viscosity: ltt = A p &h 

Turbulent Diffusivity: K, = 2 
t 

(EQ 40) 

@Q 41) 

10.2 Stochastic backscatter 

Subgrid scale turbulent fluctuations add a random component to large scale motion. 

LES without a model for stochastic backscatter misses this component. A large scale 

flow which is initially symmetric remains symmetric throughout the simulation. This is 

not typical of real flows, so stochastic backscatter can be added to the model to simulate 

the effect of unresolved fluctuations on resolved scales. There are many ways to do this. 

Leith [40] added a random acceleration term to the momentum equation. Schumann [58] 

added a random component to temperature and velocity fields. 

The current study adds a random perturbation to the velocity field in calculation of 

the strain rate tensor only. Galilean invariance is preserved. In the strain rate tensor 

E.. 
aii. aii. 2&i, 

lJ 
= 2 + 2 - --6,) which appears in the conservation equations for momentum 

axj axi 3&c, 

(EQ 34), internal energy (EQ 35), and turbulent kinetic energy (EQ 36), a random veloc- 

- - 
ity U$ is added to the filtered velocity ui = ui + u;. 

The magnitude of U; is related to the subgrid scale kinetic energy k . 
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The cumulative distribution function of the random component of the velocity field is 

chosen to be P(a, u$) since it can be solved by integration by parts. 

P(a, u’) = 1 - ema” 1 + au’ + ka2zd2 
( 1 

@Q 42) 

aBS The mean value is j; = z, so we chose X = ol,,$k to determine a = T&. The 

constant aBS is arbitrary. To find the random velocity fluctuation, a random number R 

between 0 and 1 is found [53] which replaces P(z) . Solving for u:, 

-au: -k In 1 + au3 + ~(~22~~)’ 
( 

= ln(l-R) @Q 43) 

The natural log on the left is expanded in a Taylor Series to third order. Terms above 

cubic were discarded. The resulting velocity fluctuation term is 
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$ = 
a,& 3(-61n( 1 - R))1’3 (EQ 44) 

Random angles are chosen to give the direction of the velocity fluctuation over a unit 

sphere. In 2 dimensions, one random angle is required, and in 3 dimensions, two are 

required. 

11.0 Rayleigh-Taylor instability test problem 
The choice of initial perturbations for a test problem in Rayleigh-Taylor instability is 

wide. A single mode sinusoidal perturbation can be well enough resolved to make LES 

unnecessary. This type of simulation was used in the previous chapter to examine the 

effects of ALE on Rayleigh-Taylor simulation. A purely random interface could have 

component modes that range in wavelength from larger than the size of the domain to 

much smaller than a zone. The effect of unresolved modes on the resolved modes can be 

studied this way. As resolution is increased, more modes will be resolved but there will 

be even smaller modes still not resolved. A third approach is to choose a limited number 

of resolved modes in the initial perturbation. The coupling of these modes may create 

unresolved modes, but increasing resolution should eventually resolve everything. This 

type of simulation was used in this chapter, to study the use of LES with ALE in simu- 

lating the unresolved effect of mode coupling on resolved modes. 

The problem chosen for this study contained 4 modes. They were all resolved by at 

least 10 zones per wavelength at the lowest resolution studied (50x50). The ideal gas 

equation of state was used (p = ( y - 1) p e with y = 5 ). The density ratio was 2.0 to 

1 .O in a uniform downward gravitational field of magnitude 1 .O. The domain was 10.0 
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by 10.0, and all four boundaries were walls with slip conditions, so fluid motion was 

allowed parallel to the boundaries but not perpendicular to them. The fluid interface had 

the following shape: 

Y = 5.0+ c Aicos 
i= 1,4 

(EQ45) 

The values of the amplitude, wavelength and phase are given in Table 2. The ampli- 

tudes were random numbers between 0.0 and 0.1. 

Table 2: component modes in initial material interface 

i Ai Li vi 

1 2.53358 1893e-02 2.0 n/2 

2 9.346853101e-03 3.0 0 

3 6.084968907e-02 4.0 n/2 

4 9.034202601e-02 5.0 0 

From time 1.0 to 10.0, the shape of the interface evolved as the bubbles and spikes 

grew. The resolved modes coupled to create smaller modes, which were better resolved 

at higher resolutions. The effect of these smaller features was to slow the growth of the 

larger modes. 



001x001 osxos 
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Table 3: component modes in initial material interface 

7 9.390213302e-02 4.0 Jr/2 

8 1.272157551e-02 5.0 0 

12.0 Cloutman model effects on the test problem 
The effects of LES were mostly noticeable at small scales. Small scale mixing of 

momentum and internal energy were increased by the subgrid scale model. However, 

the quantities measured in this study were large scale: the growth of the entire instability 

and the balance of energy throughout the domain. Therefore, this is a study of the large 

scale effects of LES. 

The Cloutman model creates a subgrid scale kinetic energy field as well as an eddy 

viscosity. There are several constants which can be modified to illustrate the behavior of 

these parameters. The quantity of eddy viscosity is modified by A as shown in EQ 40. 

As A goes to zero, the model is effectively shut off and k goes to zero. The default value 

was A = 0.44. As A increased, the instability growth rate decreased due to increased vis- 

cosity. 
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Fig. 22: Viscosity and growth rate in Cloutman model 

It is impossible to decouple the effect of the eddy viscosity from the other parts of the 

model, since viscosity appears in the source term as well. Therefore, increasing A also 

decreased resolved kinetic energy, increased potential energy, increased subgrid scale 

kinetic energy, and altered internal energy. 

The source and sink terms also have constant factors which modify the amount of 

energy in the subgrid scale kinetic energy field and the internal energy field. The buoy- 
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ancy source term in EQ 38 is modified by B. The default value if B was 1 .O. Increasing 

B increased the amount of k that was created, and decreased internal energy to compen- 

sate. Dissipation of k into internal energy is modified by D. The default value of D was 

0.37. Increasing D increased the amount of k that was dissipated into internal energy. It 

is interesting to note that internal energy first decreases, then increases in this test prob- 

lem. This is probably due to the material hitting the wall at the top of the domain. 

0.00 5.00 10.00 

time (micro set) 

lO.OC 

time (micro set) 

The parameters A,B, and C can be used to adjust instability growth and energy bal- 

ance for more accurate simulations. However, eddy viscosity can only decrease instabil- 

ity growth. Stochastic backscatter is one way in which small scale motion can be added 

to the simulation to increase instability growth. 
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12.1 Stochastic backscatter effects 

The coupling of large scale interface instability modes usually slows overall instabil- 

ity growth, but the presence of additional small modes during the course of the simula- 

tion can speed growth. Stochastic backscatter serves this purpose, by adding a random 

component to the velocity at each time step. 

Stochastic backscatter couples the subgrid scale kinetic energy with the large scale 

kinetic energy, and allows what amounts to viscous cooling. The presence of backscat- 

ter reduced the amount of subgrid scale kinetic energy (see Fig. 24 ), because the ran- 

dom velocity term acts as a dissipation term in the k equation. This dissipation of 

energy is not returned to the internal energy equation, however, since the viscous heating 

term due to molecular dissipation in the internal energy equation is neglected. 
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Fig. 24: Subgrid scale kinetic energy and stochastic backscatter 

Stochastic backscatter caused a slight increase in overall instability growth, as can be 

seen in Fig. 25 . This is due to the addition of small scale modes to the instability, and 

the reduction in k which leads to a reduction in the eddy viscosity. Little difference in 

the shape of the bubbles and spikes could be observed due to the random element of the 

velocity in this test problem. The effect of stochastic backscatter was so slight that a 

large value of aBS = 30 was needed to see it. 
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Fig. 25: The effect of backscatter on bubble growth 

Early in the simulation, the backscatter velocity perturbation was drowned by a 

velocity caused by diffusion. The k field first appeared next to the material interface. 

The turbulent pressure pt = 
2- jpk has the same form as the non turbulent pressure 

p = ice as1 ong as y = i in the ideal gas law for the problem. Since the unfiltered 

internal energy e = e + k the pressure will balance gravity as long as k does not move 
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between zones. But diffusion moves k between zones, causing an imbalance at the inter- 

face. This caused a velocity along the interface which drowned the stochastic velocity. 

The presence of random terms in other variables might improve the effect of this sto- 

chastic backscatter model. 

12.2 Three Dimensions 

In general, 3 dimensional simulations of the test problem grew faster than 2 dimen- 

sional simulations. The viscosity model slowed the growth of the 3 dimensional simula- 

tion just as it did for the 2 dimensional simulation. 
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Fig. 26: 3 dimensional LES 

The LES model with stochastic backscatter increased instability growth in 3 dimen- 

sions as well as 2 dimensions, but had a much greater effect. 
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Fig. 27: 3 dimensional backscatter 

13.0 ALE mesh motion and LES 
LES has typically been developed for Eulerian meshes. As the ALE mesh moves, it 

changes resolution locally. The filter function used to separate resolved and unresolved 

motion and energy varies in space and time. 

The computational solution of the filtered equations of motion assumes a uniform 

definition for the large scale and subgrid scale throughout the domain. In order to 
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approximate the gradients of large scale variables across neighboring zones, the vari- 

ables in each zone must represent the same quantity. However, as the mesh becomes 

non-uniform, each zone’s large scale is defined according to the local grid scale. The 

large scale variables in neighboring zones represent different quantities. 

However, ALE mesh motion is designed to minimize grid distortion. If neighboring 

zones are very uneven, the zones will be remapped to make them more even. This is 

intended to make the finite volume derivatives more accurate. The derivatives of zone 

centered quantities are located at the nodes, and the derivatives of node centered quanti- 

ties are located at the zone centers. This assumption is only accurate if zones are evenly 

spaced, so each node is in the center of its neighboring zones. 

A node is remapped if: 

l area of one triangle surrounding 
the zone is much smaller than 
others 

l angle of any zone is too small 

Fig. 28: Remap conditions 

In the Cloutman model, subgrid scale kinetic energy is created locally in areas where 

change is taking place in the energy field. In the case of Rayleigh-Taylor instability sim- 

ulations, this is at the interface between the two fluids, which is moving and twisting into 

convoluted shapes. This part of the mesh needs to remain closer to Eulerian than the rest 

of the mesh, in order to keep from tangling. So the use of a subgrid scale model designed 
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for an Eulerian mesh may be appropriate. 

The computational solution of the filtered equations of motion assumes a uniform 

definition for the large scale and subgrid scale in time as well as space. Values of vari- 

ables at the previous time step are used to find updated values at the next time step. To 

quantify the effect of the moving mesh on the first order k model, the rate of change of 

the k field was compared to the rate of change of the zone length scale. Both fields were 

normalized to make them comparable quantities, so the plotted quantity is gln(f ) 
I I 

where f is either k or h , 
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Fig. 29: Average of every fifth zone horizontally along midline 
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Fig. 30: Average of every fifth zone vertically along midline 

The averaged plots show that generally k changed faster than the grid size, so the grid 

may appear stationary in comparison with the k model evolution. 

The effect of the moving mesh on LES has not been eliminated, but in this case it 

may be minimized since the changes are gradual. Spatial variations in the grid are mini- 

mized, and temporal changes appear to be small compared to the changes in k . 
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13.1 Subgrid scale kinetic energy as a grid relaxation weight 

The ALE method can be tied to the LES to improve the simulation in ways that are 

impossible for fixed mesh simulations. The grid relaxation component of ALE mesh 

motion allows for weights to be placed on particular areas of the mesh. Increasing the 

weight in one area causes mesh nodes to be drawn to this area more than other areas. 

Calculating weights from subgrid scale kinetic energy can draw the mesh into areas 

where unresolved energy is highest. This can improve the resolution of the problem 

where it is needed. The disadvantage is that making the grid less uniform reduces the 

accuracy of the large scale derivatives and the subgrid scale model as well. 

In this study, a grid relaxation weight was created whose magnitude depended on the 

magnitude of k in the zone to a certain degree, within a maximum limit placed on the 

weight. The function used to calculate the weight factor is 

weightfactor = (mk + k’) 
(k+k’) @Q 47) 

where m is the maximum weight and k’ represents a typical value of k . The value of 

m was 4, since Tipton [63] found that weights based on physical parameters were harm- 

ful if larger. As k << k’ the weight factor goes to 1.0, which eliminates it’s effect. As 

k D k’ the weight factor goes to the maximum m . 

The choice of k’ alters the effectiveness of the weight. Initially k is zero everywhere, 

and remains zero through most of the mesh during the simulation. But in the area of the 

interface, k grows. For this problem, the maximum zonal k was about 0.2 at 50x50 res- 

olution. If k’ is too small, zones which contain k form a block of high weight zones. If 
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k’ is too large, the weight has no effect since all weights are about 1.0. The most effec- 

tive value for k’ was found to be about 0.1 in this case. Replacing the constant value for 

k’ with a value based on a local average of k would probably make the weight factor 

more effective. The goal is to create variation in neighboring zonal weights. A difference 

in the relative weight of two neighboring zones alters mesh motion, rather than the value 

of any individual zone’s weight. 

The k weight caused zones to cluster in areas of high k , which in turn reduced the 

amount of k created. This caused a very slight reduction in the bubble growth. 

with k weight no k weight 



67 

no k weight 

k weight 

k 
u,5u 

(lO%rgs 

u,4u 

i 
u,3u 

u2u 

u,uu $7, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , I , I ,’ 

u,uu 5,uu time (micro set) 
1 mu 

Fig. 31: Total turbulent kinetic energy and k weight 

The difference between the minimum and maximum zonal length scale is an indica- 

tion of how much extra grid distortion the k weight caused. Without the weight, the ratio 

of maximum to minimum length scale was 1.84. With the k weight, this ratio increased 

to 2.59. 
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Table 4: min and max length scale 

minimum length scale (cm) maximum length scale (cm) 

without k weight 1.446746e-0 1 2.667594e-01 

with k weight l.l68927e-01 3.025186e-01 

The effect of the weight factor can be modified by averaging each zone’s weight with 

the weights of neighboring zones, or replacing each zone’s weight with the largest 

weight of its neighbors. Averaging weights locally had little effect on the effect of the 

weights, but replacing the weights reduced their effect. 

14.0 ALE vs. Eulerian LES 
The code in this study can be run Eulerian as well as ALE, by forcing the mesh to 

return to its original position after each Lagrangian step. Therefore, the behavior of the 

LES with ALE can be compared to its behavior in a fixed mesh. Generally, the two sim- 

ulations were very similar. The largest difference was that the ALE simulation gener- 

ated more subgrid scale kinetic energy than the Eulerian simulation. 
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Fig. 32: Subgrid scale kinetic energy Eulerian vs. ALE 

The rise in large scale kinetic energy and the fall in potential energy for the two sim- 

ulations were very similar. The rise in internal energy was also greater for the ALE than 
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the Eulerian mesh, but the difference was slight. the Eulerian mesh, but the difference was slight. 
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Fig. 33: ALE vs. Eulerian internal energy 

In general, for this test problem, the behavior of LES was very similar for ALE and 

Eulerian simulations. 

14.1 Convergence study 

For both ALE and Eulerian simulations, increasing resolution decreased the amount 

of turbulent kinetic energy created, as can be seen in Fig. 34 and Fig. 35 . Convergence 

was calculated to be approximately first order. However, for the Eulerian simulation, the 
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order of convergence was greater, with a lower standard deviation, than for the ALE 

simulation. 

-I 
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Fig. 34: ALE Turbulent kinetic energy and resolution 

The power law relationship between subgrid scale kinetic energy and length scale is 
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assumed to be k = Ahn . The results are shown in Table 5. 

Table 5: ALE Convergence 

Eulerian convergence was better than ALE convergence, but the difference was 

small. 
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Fig. 35: Eulerian Turbulent Kinetic Energy and Convergence 
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Table 6: Eulerian convergence 

13 1 1.689841 1 0.02523898 I 

I 4 I 1.217672 I 0.02579273 I 
(5 ( 0.8339136 I 0.02747384 I 

16 1 0.7425943 1 0.05289287 1 

7 0.7869 148 0.1169092 I 

18 1 0.8698476 1 0.2420375 1 

(9 I 0.9352878 I 0.3868661 I 

10 I- 1.053886 0.5259496 I 

average: 1.128963 0.1427973 I 

15.0 Conclusions 
The effect of ALE mesh motion on the performance of the Cloutman model was min- 

imal in this test problem. The greatest difference was that ALE simulations created a 

larger amount of subgrid scale kinetic energy than Eulerian simulations. ALE is 

designed in such a way that it minimizes errors in spatial and temporal derivatives that 

might effect LES. Neighboring zones are kept close to the same size, which aids the 

accuracy of filtering large from small scales. The change in subgrid scale kinetic energy 

was greater than the change in grid size over time, so LES should not be greatly effected 

by the temporal changes in the grid in this case. 

LES with ALE had a slightly lower convergence rate when compared to Eulerian 
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simulations. But the LES could be directly tied to ALE mesh motion in the form of a 

grid relaxation weight. Grid resolution was increased in areas of unresolved energy, 

thus reducing the amount of unresolved energy. This is not possible with LES in an 

Eulerian mesh. 

This study raises several questions for future research in LES with ALE. The test 

problem in this chapter involves minimal mesh motion. Simulations where greater ALE 

mesh motion occurs might make problems more obvious. Also, an unresolved issue 

remains concerning the effect of the subgrid scale model as material moves across the 

mesh from areas of greater resolution to areas of lower resolution. The process of filter- 

ing is effected by spatial and temporal changes in the mesh. A length scale model would 

partially decouple the subgrid scale model from the mesh, and connect subgrid scale 

energy more directly with the flow physics. This would complicate the connection 

between subgrid scale energy and mesh motion even further. 
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Simulations of Experiments 

The previous chapters examined the use of the Arbitrary Lagrangian-Eulerian (ALE) 

method and large eddy simulation (LES) in simplified simulations of Rayleigh-Taylor 

instability. This chapter applies the same techniques to simulations of Rayleigh-Taylor 

instability experiments. The purpose is to find ways in which ALE with LES can be put 

to practical use. In Section 16.0, experiments conducted with the Linear Electric Motor 

apparatus are studied. Several changes were made to the test problem of the previous 

chapter to make a better approximation to the experiment. In Section 17.0, laser driven 

Rayleigh-Taylor experiments are studied, which show the usefulness of ALE and LES in 

more complicated simulations. 

16.0 Simulation of experiments with the Linear Electric 
Motor 

Many simulations of Rayleigh-Taylor instability experiments have been published. 

Youngs [72] published simulations of experiments performed by Read [54] in 1984. He 

measured the instability growth rate for comparison with experiment. He assumed that 

after the nonlinear phase (see Appendix A), Rayleigh-Taylor instability growth can be 

described by a similarity solution: 

spike height h, = a,Agt2 @Q 48) 

bubble height h, = a2Agt2 @Q 49) 

Over the years in various simulations, Youngs found the bubble growth a2 to have 

various values from 0.03-0.05 [46] [72] [73] [74][75]. Others have found values for a2 as 
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high as 0.06-0.07 [21][27][44]. The current study focuses on the experimental work of 

Schneider et al. with the Linear Electric Motor apparatus [57]. 

The effect of Atwood number on Rayleigh-Taylor growth was investigated by 

Dimonte [ 161. The experiments included density ratios R between 1.3 and 50 for con- 

stant accelerations. The size of the fluid cavity and the magnitude of the acceleration 

were varied to accommodate bubble and spike growth. Bubble growth h, = a,gt2 and 

spike growth h, = a,gt2 were found. Spike growth was assumed to fit a power law 

The Atwood number dependence of Rayleigh-Taylor growth has been studied 

numerically in several publications. Freed et al. [21] found a value of a2 = 0.057 for 

three density ratios 2:3, 1:3 and 1:20, and found bubble and spike penetration to be 

related to the inverse square root of the density ratio. Alon et al. [l] found that Ray- 

leigh-Taylor instability reaches a constant acceleration as the Atwood number 

approaches 1. Youngs [74] also compared Rayleigh-Taylor growth at density ratios of 

1.5, 3.0, and 20.0 in 3 dimensions. He found a2 - 0.4 and a2 - 0.5, depending on the 

calculation technique. 

16.1 Simulation details 

The linear electric motor apparatus accelerates a container filled with two fluids of 

different densities in the downward direction. This causes the heavier fluid on the bot- 

tom to push into the lighter fluid on the top. The magnitude of the resultant acceleration 

was about 73 times gravity for constant acceleration experiments. 
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Numerical simulations of these experiments require several approximations. An 

ideal gas equation of state was used, so that p = (y - 1 )pe . The experiments were 

incompressible, but the simulations were compressible. In order to reduce the com- 

pressibility of the simulations, the ideal gas law was modified. instead of the typical 

valueofy = i,avalueofy = y was used. This reduced the density variation, but 

did not eliminate it. The density at a point initially 0.6 cm above the interface can be 

seen in Fig. 36 . Ringing indicates the passage of the material interface near the point of 

measurement. 
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Fig. 36: Density variation at position (3.5,5.0) 

The pressure at the top of the domain was set to atmospheric pressure, and the pres- 

sure gradient throughout rest of the domain was set to balance the acceleration a such 

that Vp = -pa. This put the two materials in equilibrium initially. 

In simulation units, the acceleration was 7.154” 10-8~nz/~~2 , and the time for the 

experiment to run was 5*105~s. Using these values, the simulation could take about 

lo7 time steps. In order to reduce the number of time steps, gt2 was treated as a con- 
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stant. The simulation used an acceleration of 1 cm/ps2 over a time of 13.37 ps, main- 

taining the value of gt2 while reducing the number of time steps. To test the validity of 

this assumption, simulations were tried for various accelerations and times. The bubble 

growth rates were very similar for four orders of magnitude in the acceleration, as can be 

seen in Fig. 37 . 
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Fig. 37: Scaling by gt2 

Two types of initial perturbation were examined: a random spatial perturbation and a 
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multimode perturbation in which all constituent modes were resolved. The advantage of 

the multimode perturbation is that no initial modes are lost to insufficient horizontal res- 

olution, so higher resolution simulations have the same initial perturbation as lower res- 

olution simulations. In 2 dimensions, the initial perturbation at the fluid interface was a 

sum of four resolved modes with random amplitudes. 

(T+W)] (EQ56 
__ 

The values of the amplitudes, wavelengths, and phases are given in Table 7. 

Table 7: component modes in initial material interface 

) 1 1 2.533581893e-02 1 2.0 I n/2 I 
2 1 9.346853101e-03 1 3.0 0 I 

13 1 6.084968907e-02 1 4.0 n/2 I 

4 ( 9,034202601e-02 ( 5.0 I 0 I 

In 3 dimensions, the same four perturbation modes were created in the x and z direc- 

tions, and 8 random amplitudes were chosen. In order to make the overall initial ampli- 

tude approximate that of the 2 dimensional perturbation, the overall multiplier was 

divided in half. 

y = O.O5[ C 
i= 1,4 

AiCOS~~ 
i 

iOi)+i~8AiCos($f+(f)i)] @Q51) 
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1 

2 

Table 8: component modes in initial material interface 

i Ai Li vi 

2.533581893e-02 2.0 X/2 

9.346853101e-03 3.0 0 

3 6.084968907e-02 4.0 X/2 

4 9.034202601e-02 5.0 0 

5 1.95873 1928e-02 2.0 X/2 

~6 4.629535430e-02 3.0 0 
I ~ 7 1 9.390213302e-02 1 4.0 n/2 

18 ) 1.272157551e-02 ) 5.0 l 0 

Varying the initial perturbation amplitude effected instability growth a great deal. 

This amplitude was adjusted for the most accurate growth in 2 dimensions. As the 

amplitude was reduced, the instability growth rate became smaller and smaller. This 

reflects the limited vertical resolution of the simulation. Numerical dissipation occurs 

for wavelengths that are too small to be captured by the grid, either in the horizontal or 

vertical direction. 

The maximum sound speed for the 2 dimensional simulation was about 7 cm/p.s . 

considering bubble growth to be about 0.22 cm/~s , the math number was roughly 0.03. 

16.2 Simulation results 

An inviscid simulation in 3 dimensions with 50x50~50 zones was compared with an 

inviscid simulation in 2 dimensions with 100x100 zones. Growth was faster in 3 dimen- 

sions than in 2. This is not surprising considering the findings of Hecht et al. [3 11, who 

observed that 3 dimensional simulations of single mode Rayleigh-Taylor instabilities 
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Fig. 38: Bubble growth 
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Fig. 39: Spike growth 

The bubble growth rate in 2 dimensions was a2 = 0.050 while in 3 dimensions was 

a2 = 0.075 . The 2 dimensional case was much closer to experimental and simulation 

values. This is because the initial magnitude of the perturbation was tuned to the 2 

dimensional case. The choice of initial conditions is a source of inaccuracy in these sim- 

ulations, and will be discussed further in the next section. 
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16.3 The effect of LES in 2 and 3 dimensions 

The accuracy of low resolution simulations can often be improved with the use of 

LES. LES can also be used in the creation of more realistic initial conditions. LES uses 

subgrid scale modeling to approximate unresolved energy. The Cloutman model [ 121 

creates an additional conserved parameter, the subgrid scale kinetic k (see Section 10.0 

on page 42). An eddy viscosity is created from k , which turns an inviscid simulation 

into a solution to the full Navier-Stokes equations. The presence of eddy viscosity usu- 

ally reduces the instability growth (see Section 12.0 on page 52) but in this instance in 2 

dimensions growth slightly increased. 
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Fig. 40: Eddy viscosity and instability growth 

One of the difficulties in simulating Linear Electric Motor experiments is in simulat- 

ing the exact initial conditions of the experiment. It was impossible to recreate the exact 

conditions of the experiment with limited resolution, since the smallest perturbation 

modes were lost. The simulations, and perhaps the experiments as well, depended 

heavily on initial conditions. The simulations are largely in the nonlinear stage of Ray- 

leigh-Taylor growth, and memory of the initial conditions is not lost until the turbulent 
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stage. The magnitude of the initial perturbation had a great effect on the growth rate, 

making results questionable. It is important to create a perturbation whose effect is not 

so dependent on an arbitrary constant. 

The LES model with stochastic backscatter (see Section 10.2 on page 47) should be a 

better approximation to the initial conditions than an imposed interface perturbation. P. 

Amala successfully used backscatter with LES to simulate a random Rayleigh-Taylor 

perturbation in [2]. The backscatter model creates random fluctuations near the interface 

which trigger Rayleigh-Taylor growth. In the current implementation of backscatter, the 

magnitude of the instability was based on the subgrid scale kinetic energy, which was 

coupled with the other equations of motion. However, in this case the perturbation grew 

too slowly. A perturbation in other fields besides the velocity might help. 

Backscatter caused additional dissipation of subgrid scale kinetic energy. The reduc- 

tion of subgrid scale energy therefore reduced the magnitude of the velocity perturba- 

tion. Increasing the amount of backscatter only increased growth to a limited extent. 



88 

25,uu 1 

2ullu : 

bubble - 
height I 
(In@ : 

15.uu 1 

iu,uu 1 

5,uu { 

aBS = 30.0 

. 

/ 

+ experimental data 

mu 1 uu,uu 2uu au 3uu ,uu 4uu .uu 5uu ,uu 
A,gt2 (mm> 

Fig. 41: Increasing backscatter in 2 dimensions 

Backscatter caused more growth in 2 dimensions than 3, so dissipation effects are 

probably greater in 3 dimensions than 2. 
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Fig. 42: Instability growth of backscatter without an initial perturbation imposed 

Increasing resolution increased the growth of a perturbation caused by backscatter. 

The velocity of each node is perturbed by a random quantity. Doubling the number of 

nodes increases the number of possible perturbation modes that can be created as a 

result of the random velocity. 
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Fig. 43: Backscatter and resolution in 2 dimensions without an initial perturbation 
imposed 

16.4 Atwood number dependence 

The effect of Atwood number on Rayleigh-Taylor bubble and spike growth was stud- 

ied by Dimonte [ 161 for density ratios between 1.3 and 50. In this study, density ratios 

from 2.0 to 10.0 were simulated. As the density ratio was increased, the spikes became 

narrower and narrower until they were hard to resolve, so higher density ratios were not 
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simulated. As the density ratio increased, so did the growth of the bubbles and spikes. 

In order to prevent the instability from hitting the top and bottom of the container in the 

experiments, the acceleration was reduced for higher density ratios. In these simula- 

tions, the domain was increased to 22.0 cm to fit all density ratios at the same accelera- 

tion. Scaling by gt2, compressibility reduction, and a multimode interface were used as 

described in Section 16.1. The Atwood number study was in 2 dimensions. 

I 
Table 9: Growth Rates 

I I I 1 
density ratio Atwood # 

4 
a2 bubble a, spike 

2 0.333333 0.0452 1593 

3 0.5 0.04222986 

4 0.6 0.04056284 

5 0.666667 0.03968 104 

6 0.7 14286 0.03846328 

7 0.75 0.03527236 

8 0.777778 0.03455228 

9 0.8 0.03093695 

10 0.818182 0.02684966 0.08910156 ] 

0.06222622 1 



92 

* spike 

i- bubble 

Fig. 44: Instability growth and density ratio 

Instability growth was plotted against A,gt2 and the slope found through a linear fit 

for each density ratio. A downward trend in bubble growth rate is noticeable as density 

ratio increases. There was a much smaller downward trend in experimental measure- 

ments. Values for a2 were lower than experimental values as well. The spike growth 

rate increased with density ratio as expected, but at a slower rate than observed experi- 
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mentally. Experimental results show a I = 0.052R 0.32 AZ 0.05 
while simulation results 

show aI = 0.059R 0.18 . 

16.5 Simulation observations 

Simulation of Rayleigh-Taylor instability experiments with the Linear Electric Motor 

show the adaptability of the methods employed in recreating experimental conditions. 

However, it was difficult to make a realistic approximation of the initial conditions. LES 

shows promise for this type of simulation, in creating a more realistic instability than the 

imposed perturbation used in this study. However the current implementation of back- 

scatter had too small an effect. 

Atwood number dependence differs from experiment, giving lower values for the 

growth rates of both bubble and spike. But the greatest difference occurred in the power 

law for density ratio in the spike. The simulation value was over 40% lower than the 

experimental value. 

17.0 Simulation of laser driven Rayleigh-Taylor instability 
experiments 

The previous section examined simulations of Rayleigh-Taylor instability experi- 

ments that were similar to the simplified test problems of the previous chapters. This 

section looks at simulations of experiments that use the ALE method to greater advan- 

tage. Mesh motion is increased, illustrating the importance of ALE in simulations of 

experiments. The usefulness of LES in approximating unresolved instability modes is 

also shown. 
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Rayleigh-Taylor instability is particularly important to inertial confinement fusion 

(ICF) experiments. In indirect drive ICF, laser light shines on the interior of a gold cov- 

ered cylindrical hohlraum. The laser radiation is reflected as an x-ray bath surrounding 

the target containing deuterium-tritium fuel. The fuel is surrounded by an ablator shell 

of brominated plastic. 

The outside layer of the shell is vaporized by the x-ray bath, and ablative acceleration 

occurs. Due to conservation of momentum, the outward acceleration of the vaporized 

(less dense) shell causes the non-vaporized (more dense) inner part of the shell to expe- 

rience an inward acceleration. The acceleration of less dense into more dense shell mate- 

rial is the first case of possible Rayleigh-Taylor instability in the process. The lower 

density fuel also decelerates the inner surface of the higher density capsule material as it 

is compressed. This is the second case of possible Rayleigh-Taylor instability in the 

process. If Rayleigh-Taylor instability grows to such an extent that it causes the fuel and 

shell material to mix, the energy yield will be reduced. 

Experiments by Budil et al. [4][5] address the growth of Rayleigh-Taylor instability 

in conditions relevant to ICF experiments. In [5], Budil et al. examined the growth of 

two Rayleigh-Taylor unstable modes that were initially too short in wavelength to be 

resolved experimentally. The growth of a larger beat mode produced by mode coupling 

was measured instead. The unstable interface was placed away from the stabilizing 

effect of the ablative acceleration to produce the most growth at short wavelengths. 

Two layers of material were attached over a hole in the hohlraum with a sinusoidal 

interface perturbation imbedded between them. Lower density brominated plastic simi- 

lar to the ICF ablator shell material was backed with higher density titanium. The exper- 
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imental package was ablatively accelerated, and a Rayleigh-Taylor unstable condition 

Vp l Vp < 0 developed at the interface. The lower density brominated plastic was 

accelerated into the higher density titanium. The actual growth of the bubbles and 

spikes could not be viewed directly from the side of the target. Instead, an x-ray back- 

lighter beam was used to radiograph the target, and the resulting data was analyzed to 

determine the amplitude of the constituent modes of the instability. 

17.1 Beat modes 

In [5], both initial interface modes (4 and 5 pm wavelengths at 0.3 pm amplitude) 

were smaller than the experimental resolution of about 7 pm. However, mode coupling 

produced a beat mode whose wavelength (20 pm ) was large enough to be resolved. 

This phenomenon can be observed in simulations as well. 

A two mode instability at the interface of a Rayleigh-Taylor instability simulation can 

cause the growth of a larger wavelength beat mode in a simulation where neither mode 

is well resolved initially. The following simulation was done with two ideal gasses of 

different densities superimposed in a uniform acceleration. The two modes had wave- 

lengths h, = 0.4 and h, = 0.5 cm, and amplitudes 0.01. The grid resolution was 

0.2x0.2 cm, so neither mode was well resolved initially. The instability grew with a 

clearly dominant mode of wavelength 2.0, which is one of the beat modes for the sum of 

the two modes, as can be seen in Fig. 45 . 

= 2.0 @Q 52) 
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Fig. 45: The growth of a beat mode from a two mode interface at 0.2x0.2 resolution 

The beat mode did not start growing immediately. According to Rayleigh-Taylor 

instability theory [59], interface instability modes grow independently for a short linear 

phase in their growth. After the linear phase, individual modes begin to couple as they 

grow further into the nonlinear phase. It is in the nonlinear phase that beat modes can 

appear. The nonlinear phase starts after the amplitude of the initial modes reaches about 

a tenth of their wavelength. However, linear theory alone does not account for the long 

delay before the growth of the beat mode in this simulation. The beat mode took 10 

microseconds to begin to grow at all, which is more than enough time for the initial 

modes to grow past the linear phase if they were resolved. 

Had the initial interface been well resolved, the two modes would have grown and 

interfered to produce many modes. The beat mode was not visible in this case. Symme- 

try was preserved, while many small scale features were produced by mode coupling. 
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Fig. 46: Growth of two mode interface at 0.1x0.1 resolution 

The addition of a subgrid scale model with stochastic backscatter (see Section 12.1 

on page 55) enhanced the growth of the bubble. There are many ways to implement sto- 

chastic backscatter. In this study a random perturbation was added to the velocity field 

in the calculation of the strain rate tensor. The constant cxBS was set to 3.0. The random 

perturbation represents a sampling of an infinite number of unresolved modes. The 

magnitude of the perturbation was related to $k , where k is the subgrid scale kinetic 

energy. Stochastic backscatter increased overall instability growth. However, symmetry 

was broken. Few small scale features were preserved, due to low resolution, but the 

overall growth of the instability was closer to that of the more highly resolved simulation 

in Fig. 46 . 
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Fig. 47: Growth of two mode interface with backscatter at 0.2x0.2 resolution 

The effect of backscatter on bubble growth is shown in Fig. 48 . The bubble height 

was measured from 1% to 99% by mass fraction, to track the edge of the instability as 

closely as possible. The step appearance of the growth is due to the grid resolution. 
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Fig. 48: Backscatter and instability growth 

17.2 Simulation details 

A more realistic simulation of the experiment was carried out without LES, using 

more realistic equations of state [70] than the ideal gas law. A two mode simulation was 

created with a horizontal resolution of 7 pm and initial perturbation modes of 4 Pam and 

5 pm in wavelength. The grid zones were initially clustered in the 551_~m target (40 

pm brominated plastic backed by 15 pm Titanium), and a 450~~2 layer of vacuum was 



100 

also simulated below the target. In the vertical direction there were 221 zones in the tar- 

get material and 100 zones in the vacuum. This was necessary since the target expanded 

vertically and filled the entire domain, and the lower boundary of the target developed 

ripples. 

As can be seen in Fig. 50 , the ALE method allowed the mesh to spread with the tar- 

get. In an Eulerian simulation, higher resolution would be required throughout the 

domain to follow the moving target. This would slow the simulation considerably. The 

resolution of the mesh within the target reduced over time, but the clustering of zones in 

the target made the resolution highest where it was most needed through the simulation. 

That is, ALE made better use a limited number of zones. 
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Fig. 49: Initial mesh 



102 

Fig. 50: Final mesh 

The resulting interface clearly shows the presence of a mode that is larger than either 

of the constituent modes. This should be the beat mode at 20 Pm. Analysis shows this 

mode to be about 33 pm, somewhat larger than the expected beat mode. 
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Fig. 5 1: Growth of two mode instability 

18.0 Conclusions 
The simulations of experiments in this chapter indicate that LES with ALE may be 

very useful in future applications. Both methods improve accuracy at lower resolutions, 

and this will be important until computers are large enough to run simulations that 

resolve all relevant scales. ALE follows the changing shape of the target, making lower 

resolution simulations more powerful, while LES simulates small scale motion. 

Stochastic backscatter replaces specific unresolved interface modes with a spectrum 

of many unresolved modes. The resulting interface does not have the same shape as the 

fully resolved simulation, but the growth rate is more accurate. Therefore, stochastic 

backscatter can serve as a subgrid scale model for unresolved interface modes, allowing 

low resolution simulations to be more accurate. 

There is a great deal of room for future research in this area. In particular, the behav- 

ior of the LES has not been tested in the ALE simulation of the laser driven Rayleigh- 

Taylor instability experiment. Since the mesh motion is so much greater in these simula- 

tions than in test problems used previously, this would be a good test of the behavior of 
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LES with ALE. 
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Conclusions 

The application of large eddy simulation (LES) to Arbitrary Lagrangian-Eulerian 

(ALE) simulations is a relatively new area of study. This research addresses three ques- 

tions: 

1. How does ALE mesh motion effect the simulation of Rayleigh-Taylor instability? 

2. How does LES work with ALE mesh motion? 

3. How can ALE mesh motion and LES be used together to improve experimental simu- 
lations? 

The results of this research show that, without LES, ALE improves the ability of a 

mesh to capture a moving Rayleigh-Taylor interface. ALE more accurately captured the 

instability growth and energy balance than Eulerian simulations, as compared to higher 

resolution simulations. 

LES worked well with ALE mesh motion in the cases studied. The performance of 

LES was similar with ALE and Eulerian mesh motion. Subgrid scale kinetic energy can 

be used as an indicator to the ALE mesh as to where zones are needed most. This 

response of the mesh to simulation conditions is impossible with fixed meshes. 

Experimental simulations showed areas where LES can improve a simulation in con- 

junction with ALE. Stochastic backscatter in particular models the unresolved small 

scale instability modes at resolvable scales. Simulations of laser driven instability show 

the usefulness of ALE. The mesh zones were clustered in the target area, which spread 

in the course of the simulation to many times its original size. The zones also spread to 

follow the target, eliminating the need for high resolution throughout the simulation. 

In conclusion, ALE improves simulation of Rayleigh-Taylor instability, and can be 
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used in conjunction with LES to simulate unresolved flow features. The combination of 

ALE and LES should be important in future experimental simulations. 

19.0 Future research 
The behavior of LES in different ALE simulations could use more attention. This 

study concentrates the analysis of ALE and LES on simple simulations where ALE does 

not cause a great deal of mesh motion. Looking at the behavior of LES in simulations of 

laser driven Rayleigh-Taylor instabilities would show how they behave in the presence 

of greater mesh motion. 

Stochastic backscatter is another area where improvements would be useful. Perturb- 

ing more fields than the velocity may increase the effect of the backscatter model. This 

model might then be more useful in creating the instability in Linear Electric Motor 

experimental simulations, and in simulating unresolved modes in laser driven experi- 

mental simulations. 



107 

Appendix A: Rayleigh-Taylor Instability 

Rayleigh taylor instability occurs at a fluid interface if the pressure and density gradi- 

ents are in opposite directions. That is, Vp l Vp < 0. If the interface between the two 

fluids is perfectly flat, the fluids remain in equilibrium with the pressure gradient balanc- 

ing gravity. But infinitesimal perturbations in the interface grow exponentially. The 

heavy fluid moves into the light fluid, forming “spikes”, and the light fluid moves into 

the heavy fluid, forming “bubbles”. The shape of the interface can be Fourier analyzed 

to describe its component wavelengths. 

time = 0 

I 
P2 

g 

I 

VP 

Pl 

time > 0 

Fig. 1: Rayleigh-Taylor Instability 

Rayleigh-Taylor instability has three stages [72]. First, in the linear stage, each per- 

turbation wavelength grows independently according to linear theory. Next, in the non- 

linear stage, the different wavelengths interact and slow individual growth. Finally, in 
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the turbulent stage, all memory of initial conditions is lost. 

1.0 Linear stability analysis 
Chandrasekhar [9] describes the early stages of Rayleigh-Taylor instability by linear 

stability analysis for incompressible, inviscid fluids. Initially a stable equilibrium exists 

with the pressure gradient balancing gravity: Vp = pg. Gravity acts only in the z 

direction. A small perturbation in pressure and density is described by p = p + Sp and 

aP p = p + 6~. Given $p + uiax. = 0 the equations of motion become: 
1 

aUi 
Conservation of mass: axi = 0 @Q 1) 

Conservation of momentum: 
aUi 

p*=& = -=$p-(g6p)i (EQ 2) 
i 

Assuming a solution of the form exp(ik,x + ik,y + nt) for 6p and 6p the stability 

equation is 

-pk2w = -cg*w 
n2 dz @Q 3) 

where w is the velocity in the z direction. 

For two uniform fluids separated initially by a flat, horizontal boundary at z = 0, the 

stability equation becomes 

2 

dwk2W = 0 

dx2 
(EQ 4) 
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where k2 = kx2 + ky2 = (27~/h)~. The boundary conditions are given by 

fl=o[(P~)~o+,(Pf)l,J = $MP2-Pw2mo (EQ 5) 

where w vanishes at += and is continuous and equal to w. at z = 0. T is surface ten- 

sion. Therefore, 

(EQ 6) r12 
k2T -- 

P2+Pl dP,+Pl) 1 
The fluids are Rayleigh-Taylor unstable if p2 < pl and 

O<k< +P~-P~I 
ib- Surface 

tension T damps larger k. 

2.0 Nonlinear growth 
Linear theory predicts an exponential growth rate for perturbations in a Rayleigh- 

Taylor unstable fluid. However, in actual instabilities, linear theory only applies for a 

short time. In situations where the unstable interface is random, many unstable modes 

are present. The most unstable mode grows first, followed by other modes. Initially all 

modes grow independently according to linear theory, but they rapidly begin to interfere 

with each other and the linear solution no longer applies. 

In single mode perturbations, the mode grows according to linear theory until it 

reaches about a tenth of its wavelength [52]. After this, nonlinear growth continues as 

additional unstable modes are produced. It has been found that single mode Rayleigh- 

Taylor instabilities approach a constant velocity, while multimode or random instabili- 
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ties approach a constant acceleration as they grow [l] [38]. 

For a random interface [72], the most unstable wavelength grows first. Once the 

amplitude of the most unstable wavelength has reached approximately half its wave- 

length, the nonlinear stage begins. Finally, when the dominant wavelength’s amplitude 

has reached about ten times the most unstable wavelength, a similarity solution can be 

applied. 

3.0 Similarity solution 
In the turbulent stage of Rayleigh-Taylor instability, the initial conditions are forgot- 

ten and surface tension is neglected. Youngs [72] assumes a similarity solution with 

nt = const so that 

h = aA,gt’ (EQ 7) 

The instability width is h , although this is usually applied to bubble growth rather than 

P2-Pl the entire instability growth. The Atwood number is defined as A, = - . The con- 
P2+Pl 

stant a has been measured for many experiments and simulations, with results ranging 

between 0.03 and 0.07. The effect of compressibility and viscosity is to reduce the 

growth rate [59]. 
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Appendix B: Solving the Equations of Motion 

4.0 Euler equations 
Since molecular viscosity is neglected, the inviscid equations of motion are solved 

when subgrid scale models are not used. In the Lagrangian step of this Arbitrary 

Lagrangian-Eulerian (ALE) method, the grid moves with the fluid. The equations of 

motion are solved for one time step. This is done predictor corrector for second order 

accuracy. The inviscid equations of motion in Lagrangian coordinates are: 

1dP Conservation of Mass: -- = -VW 
Pdf 

Conservation of Momentum: p$ = - Vp + pg (EQ 9) 

Definitions: 

Conservation of Internal Energy: pg= -pVau 

(EQ 8) 

@Q 10) 

d il -= - + u l V Lagrangian derivative 
dt at 

t time 

p density 

u velocity vector 

p pressure (for example, by the ideal gas law p = (y - 1 )pe where y = 

g gravitational acceleration 

e internal energy per unit mass 
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4.1 Conservation of mass 

In solving the equations of motion, EQ 8 and EQ 10 are coupled together. First, EQ 8 

is integrated from t to t’ over the appropriate time step, either $ for the predictor step 

or At for the corrector step. 

Vwdt @Q 11) 

(EQ 12) 

Since the mesh follows the fluid, the mass in a zone remains constant throughout the 

Lagrangian step so p’ = p; . Therefore, 

V’ - = exp 
V 

(EQ 14) 

Expanding the exponential in a Taylor series to first order and solving for its argument, 

t’ 
I Vwdt = v-v 

V 
t 

(EQ 15) 

This approximation is used to solve the internal energy equation (see Section 4.3). 

4.2 Conservation of momentum 

To advance the velocity equation in time from t to t’ , EQ 9 is discretized for the 
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appropriate time step, either $ for the predictor step or At for the corrector step. 

u’ = u + Ata @Q 16) 

The acceleration a is derived by a finite volume scheme developed by Wilkins for the 

HEMP code [69]. The momentum equation is integrated over the volume of a mesh 

zone, V, which has surface S . Using Green’s theorem, the volume integral of the pres- 

sure gradient becomes a surface integral. 

x momentum equation: spdu,dV = -jsdV = -jpdy ap 

v dt V S 
@Q 17) 

y momentum equation: Jpe’dV = -$dV = jpdx 
v dt S 

(EQ 18) 

This process is repeated for each mesh zone. The density and velocity derivatives are 

assumed to be constant throughout the zone volume, so they come out of the integral. 

The nodes and zones in question are numbered as follows: 

x3, y3 
I , 

\ I 

\ , 

\ , 
\ , 

P&L, *Pi \ I \ I 

x4, Y4 

xl, yl 

Using the midpoint rule, the acceleration is approximated in terms of the x or y values 

at the four nodes and the pressure values at the four zone centers. The resulting accelera- 
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tion is node centered. Gravitational acceleration is added to the appropriate acceleration 

terms. In this case, gravity is in the y direction. 

a, = -~[P~(Y~-Y~)+P~(Y~-Y~)+P~(Y~-Y~)+P~(Y~-Y~)I @Q 19) 

L[p2(x1-x2)+p3(x2-x3)+p4(x3-x4)+p1(x4-xl)]+g (EQ20) 
‘Y = -pA 

The units of the acceleration should be velocity = Pressure ’ area 
time mass * 

This formula- 

tion uses the form pressure x length 
density x area 

instead, which amounts to the same units. 

4.3 Conservation of internal energy 

The internal energy equation (EQ 10) is first integrated over the zonal volume V: 

I de p&dV = mdt = -jpVwdV 
v dt 

(EQ 21) 
V 

Next, EQ 21 is integrated over time and the order if integration on the right is 

1 n+- 
exchanged. Pressure is evaluated at time tn for the predictor step and time t 2 for the 

corrector step. 

jm$dt = -i(, 
t 

; /VwdV)dt = -;(pjV.udt]dV (EQ 22) 

Using EQ 15, the right hand side is simplified. The midpoint rule is used, so pressure 

is evaluated at the zone centroid. 

m(e’-e) = -J’p (“;‘)dv = -p(v;v), 

V 
(EQ 23) 
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The final form for the change in internal energy becomes PAV . 

e’ = “-17(v’- v> 
PV 

(EQ 24) 

This can be reached a simpler way through the second law of thermodynamics: 

Tds = de + pdV where s is entropy. In the case where ds = 0, de = -pdV. 

4.4 Predictor step 

1 n+- 
In the predictor step, time is advanced from tn to t 2 using a forward difference 

approximation in time, giving first order accuracy. 

1 
It+- 

Advance velocity in time: u 2 = un + At an 
2’ 

1 n+- 
Move grid to follow the fluid: x 2 = Xn + A! Un 

2’ 

1 
il+- 

Advance density in time: p 2 = - pnvn 
1 n+- 

v 2 

@Q 25) 

(EQ 26) 

(EQ 27) 

1 n+- 
Advance internal energy in time: e 

2 = en-p @Q 28) 

4.5 Corrector step 

The corrector step uses the predictor step to make a central difference approximation 

in time, at second order accuracy. Time is advanced from tn to t n ’ ’ . Then, to keep the 

half time step values at second order accuracy, the first order values are replaced with 

averages of second order values. 
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1 n+- 
Advance velocity in time: u n+l = un +Ata 2 

@Q 29) 

1 n+- 
Average half time velocity to second order accuracy: u 2 = un+un+l) (EQ30) 

1 

Move grid to follow the fluid: xn + ’ = xn + Atu 
n+- 

2 

Advance density in time: pn + ’ = - pnvn 
V n+l 

(EQ 31) 

(EQ 32) 

Advance internal energy in time: en + ’ = en - p @Q 33) 

5.0 Equations of motion for the Cloutman model 
For the Cloutman model [ 121, the entire viscous compressible equations of motion 

apply. 

1dP Conservation of Mass: -- = -VW 
Pdf 

@Q 34) 

Conservation of Momentum: pg = - Vp + Ve(lt~~~) + pg @Q 35) 

Conservation of Internal Energy: p$= V.( KVT) - pV.u + ltzzij: Vu 

Definitions: 

(EQ 36) 

d a -= - + u l V Lagrangian derivative 
dt at 

t time 

p density 

u velocity vector 
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p pressure (for example, by the ideal gas law p = (y - 1)pe where y = ;I 

au 
& i auj 2 

lJ ax 
. . = - + - - -VwGij strain rate tensor 

j axi 3 

au. au. 
T;ij = - 6ijP + /J 1 + J + GijhV’U stress tensor l 1 axj axi 

p,, h dynamic viscosity of the fluid h = 

v = p/p kinematic viscosity of the fluid 

g gravitational acceleration 

e internal energy per unit mass 

K internal energy diffusivity 

T temperature: T = e/c, in this case 

by Stoke’s hypothesis 

5 = $ heat capacity at constant volume 

These equations are filtered to separate the resolved scales from the subgrid scales. A 

new variable, k , the subgrid scale kinetic energy, is created. After numerous approxima- 

tions (see Section 10.0 on page 42), the equations of motion become: 

Conservation of Mass: &c= -fiV.ii @Q 37) 

Conservation of Momentum: fi$B = - V(j + p,) + V.((p, + pt)Eii) + cg (EQ 38) 



Conservation of Internal Energy: 

&E= V.(KVT) + V.(lc,VZ) -fiV.Z + j.Gij:VE + SINK -SOURCE 

Conservation of Turbulent Kinetic Energy: 

fig= V.((p + @Vk) -ptV.ii + ptEij:VU - SINK + SOURCE (EQ 40) 

3 
z 

SINK = Dj+, 

SOURCE = -Bpt 7.7 

2- 
Turbulent Pressure: p, = 3 pk 

Turbulent Viscosity: ltt = Aph& 

Definitions: 

Turbulent Thermal Diffusivity: K, = E 
t 

(f) = f = filtered f 

f = (PfV(P) 
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(EQ 39) 

(EQ 41) 

@Q 42) 

(EQ 43) 

@Q 44) 

@Q 45) 

Eddy viscosity is assumed to be much larger than molecular viscosity. Therefore, lt., 

K = ‘G,andD = E 
SC are neglected. This is a source of error as the grid resolution 

becomes smaller. As resolution comes closer to the Kolmogorov scale, the subgrid scale 

models will turn off. At this point the molecular viscosity should become significant, but 

in this case the simulation will become inviscid. It is assumed the resolution will not 

approach the Kolmogorov scale. It is also assumed that Pr, = SC, = 0.7, the values 
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for an ideal gas. 

5.1 Solving the equations of motion 

The method for solving the equations of motion is much the same as for the Euler 

equations, with a few added steps. The strain rate tensor is created using a variation of 

the finite volume method described in Section 4.2. The velocities are node centered, so 

their derivatives become zone centered. The momentum equation becomes: 

.:, 

dUX ap a~,, aTxy 
Px =-=&+x ‘& 

du, _ ap a~ a~, 
Px --=&‘& +=& +Ps 

(EQ 46) 

(EQ 47) 

The derivatives of the pressure and stress tensor are calculated with the method 

described in Section 4.2. 

For the internal energy equation and the turbulent kinetic energy equation, the stress 

tensor is contracted with the velocity gradient. The stress tensor is symmetric so 

~ij = ~ji. The stress tensor is also defined to be traceless SO 7ii = 0. That is, the stress 

tensor we are actually using is: 

1 'I: zYx 0 xx zxy 7YY 0 -ox, 0 0 +7yy> 1 

This allows the simplification of the contraction. 



120 

Since Zij is symmetric and is antisymmetric, their product is zero. The 

product of ~ij 
2 

and -V.u6, is also zero, since Zij is traceless. Therefore, 3 

zij:vu = 1 = 
Wi.i 

Since the components of the strain rate tensor were already calculated in creating the 

stress tensor, this saves computational time. 

The Cloutman model adds diffusion, source, and sink terms to the internal and turbu- 

lent kinetic energy equations. The internal energy equation (EQ 39) and the turbulent 

kinetic energy equation (EQ 40) have very similar structure, and are solved in a similar 

way. Each equation is solved in three parts: diffusion, work, and source/sink. The 

changes to the energy fields incurred by each of the three processes are added together to 

give the total change in energy. This occurs for both the predictor and corrector step in 

solving the Lagrangian equations of motion. Using turbulent kinetic energy as an exam- 

ple, the three parts to the solution are: 

1. Diffusion: b$= VW,W (EQ 48) 

2. Work: p$= - p,VG + /Ateij:vii 

3.SourceBink: p$= -Dfi$-Bpt[!f.!f]ifco 

(EQ 49) 

(EQ 50) 
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51.1 Diffusion 
The diffusion terms in the internal and turbulent kinetic energy equations are solved 

by an explicit finite element approach using a staggered mesh. The turbulent kinetic 

energy equation is used as an example. First, EQ 48 is integrated over the zonal volume 

V 

The time derivative of k is constant throughout V so it is removed from the integral. 

Gauss’s Law is used to convert the right hand side to an integral over the surface of the 

zone S . 

dk 
zm = s I y,Vk . dS @Q 51) 

A finite difference approximation is used for the time derivative, and a finite element 

approach is used for the surface integral. This converts EQ 51 to a matrix equation 

which can be solved explicitly. 

k’ = k+LtAk 
m (EQ 52) 

51.2 Work 
The pressure and stress work terms in EQ 40 are solved by a finite volume method 

(see Section 4.2). 

Initially, turbulent kinetic energy k is zero throughout the domain. It can be created 

by the buoyancy source term -B pt . EE)i/<o. A fluid which is Rayleigh-Taylor 
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unstable will create k through buoyancy, but a Kelvin-Helmholtz unstable fluid will not. 

A seed term is needed to create k in zones where the buoyancy source term does not 

apply, but k is created due to viscous stress. The seed term for k is developed by explic- 

itly integrating the pressure and stress terms in the k equation: 

-dk 
% 

= -pJ*il + y,<j:vu 

Using EQ 41 and EQ 42 and cancelling density: 

dk - = -;kVG+ A&hq:Vii = - ak+ p& 
dt (EQ 53) 

EQ 53 is integrated over one half time step for the predictor step. 

k 
.+; t+E 

2 

I 

dk 
I k” -ak+P$k = t 

dt 

1 
Iz+- 

Solving for k 2 : 

kn+’ = [(J?-i)exp(-a$)+$] 

kn is zero, and the exponential is expanded in a Taylor series to second order. Terms 

involving a cancel, so the resulting seed term depends only on the viscous stress term 

1 n+- 
k 2 
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This seed term is used only in the predictor step to seed k only in zones where it is zero. 

This produces a non-zero turbulent pressure and turbulent stress tensor which may be 

used in the corrector step. It couples the k equation directly to the momentum equation 

for turbulent production. 

5.1.3 Source and sink 
The terms describing loss and gain of turbulent kinetic energy k are solved explicitly. 

Using l.tt = ApL,h, EQ 50 becomes: 

@Q 54) 

1 3 

Cancelling density, EQ 54 can be written as 2 = ak’ - pk’ where 

a = -BAL(!/.!!)ilio 
D 

represents the source and p = X represents the sink. An 

explicit solution is found by integrating from time t to t’ over a half time step $ for the 

predictor step or a full time step At for the corrector step. 

k t’ 
dk 

3 
= dt I 

knak2 - pk2 t 

Solving for k’ : 
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(EQ 55) 

In the course of a simulation, the source term may at any time decrease to zero, 

regardless of the value of k . But the sink term will always be present wherever there is 

turbulent kinetic energy. As it stands, the source and sink are linked so that if either is 

zero, both are zero. In the case where a is zero (no source) the hyperbolic tangent in 

EQ 55 is expanded in a Taylor series, decoupling the source and sink. 

k’= @Q 56) 

The change in energy due to the source and sink is added to the k equation (EQ 40) 

and subtracted from the internal energy equation (EQ 39) to maintain energy conserva- 

tion. 

5.2 Stochastic backscatter 

Subgrid scale turbulent fluctuations add a random component to large scale motion. 

Subgrid scale models without stochastic backscatter miss this component. A large scale 

flow which is initially symmetric remains symmetric throughout the simulation. This is 

not typical of real flows, so a stochastic backscatter term can be added to the model to 

simulate the effect of unresolved fluctuations on resolved scales. 

A random perturbation is added to the velocity field in calculation of the strain rate 

tensor only. This preserves Galilean invariance. In the strain rate tensor 
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E: 
ali’ aii. 2&i, 
-2.+-L-----6.. 

lJ * ’ = ihj ihi 3hk ” 
in the conservation equations for momentum (EQ 38), inter- 

nal energy (EQ 39), and turbulent kinetic energy (EQ 40), a random velocity US is 

- 
added to the filtered velocity Ui = Ui + u:. 

The magnitude of ZAP is related to the subgrid scale kinetic energy k . We choose the 

cumulative distribution function of the random component of the velocity field to be: 
. 

uR 
I 

2 -ax xe dx 
P(a, Llf) = O (EQ 57) 

f- x2eHaxdx 
0 

This distribution was chosen since it can be solved by integration by parts with the 

following results: 

R 

P(a, UiR) = 1 - fYaui 1 + auR + $&)2 
( 1 

(EQ 58) 

3 The mean value of x is 2 = a) so we chose Z = ass4 to determine a = 

The constant aBS is set by the user. To find the random velocity fluctuation, a random 

number R between 0 and 1 is found (similar to Numerical Recipes [52] function ran2 p. 

282) which replaces P(a, uiR). Solving for ZL~, 

- uuf + In 1 + (EU$ + ;(a~:)~ 
( 

= ln(l-R) (EQ 59) 

The natural log.on the left is expanded in a Taylor Series to third order. Terms above 

cubic were discarded. The resulting magnitude of the velocity fluctuation is: 
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u; %I& = 3(-61n( 1 - R))“3 @Q 60) 

More random numbers are chosen to give the direction of the velocity fluctuation over a 

unit sphere. In 2 dimensions, one random angle is required, and in 3 dimensions, two 

are required. 

5.3 Predictor step 

1 n+- 
In the predictor step, time is advanced from tn to t 2 using a forward difference 

approximation in time, giving first order accuracy. The variables now represent filtered 

quantities, except for k which is subgrid scale. 

1 
n+- 

Advance velocity in time: u 
2 = un + !!! an 

2’ 

1 n+- 
Move grid to follow the fluid: x 2 

1 n-t- 
Advance density in time: p 

Vn 
2 = p” e - 

1 n+- 
v 2 

1 n+- 
Advance internal energy in time: e 2 = en -I- Act + Ae2 + de3 

Diffusion: Ae t = .&?Ane” 

1 n+- 

PdV work: Ae2 = -p 
2-vn 

p”v” 

(EQ 61) 

(EQ 62) 

@Q 63) 

(EQ 64) 

(EQ 65) 
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Source/sink: Be, = 
$tanh($&$) + fi 2 

I+ &tanh($m)fi -kn 
@Q 66) 

1 n+- 
Advance turbulent kinetic energy in time: k 2 = kn + Ak, + Ak, + Ak, + Ak, 

Diffusion: Ak = tAnkn 1 2m 

PdV work: Ak, = -pt 

Stress work: Ak, = &(ipt~icG)Vn 

Source/sink: Ak, = 

5.4 Corrector step 

fitanh($,,@) + fi 

I+ &tanh($&$)& 

2 

- kn 

@Q 67) 

(EQ 68) 

@Q 69) 

@Q 70) 

The corrector step uses the predictor step to make a central difference approximation 

in time, at second order accuracy. Time is advanced from tn to t ’ + ’ . Then, to keep the 

half time step values at second order accuracy, the first order values are replaced with 

averages of second order values. 

1 

Advance velocity in time: tin + 1 = un + At . a 
n+- 

2 @Q 71) 

1 
Il+- 

Average half time velocity to second order accuracy: u 
2 = i . (un+un+*) (EQ72) 
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1 n+- 
Move grid to follow the fluid: xn + ’ = xn + At . u 2 (EQ 73) 

1 n+- 
Average half time grid to second order accuracy: x 

2 
= i . (xn+xn+l) (EQ74) 

Vn 
Advance density in time: p’” ’ ’ = pn . - (EQ 75) 

V n+l 

Advance internal energy in time: e 
n+l = en + Ae, + he, + Ae3 

1 1 n+- n+- At 2 2 
Diffusion: Ae, = ;A e 

PdV work: Ae, = -p 

(EQ 76) 

(EQ 77) 

(EQ 78) 

Source/sink: Ae, = (EQ 79) 

Advance turbulent kinetic energy in time: kn + ’ = k” + Ak, + Ak, + Ak, + Ak, 

1 1 
At n-b- n-b- 

Diffusion: Ak, = GA 2k 2 

PdV work: Ak, = -pt 

Stress work: Ak, = $;ptE;+$+y: @Q 82) 

(EQ 80) 

@Q 81) 



Source/sink: Ak, = [!iz:AG[ - k” 
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@Q 83) 
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Appendix C: Grid Relaxation 

6.0 Motivation for grid relaxation 
The Arbitrary Lagrangian-Eulerian (ALE) method in this study has two steps. In the 

Lagrangian step, the equations of motion are solved in order to advance the fluid from 

time t to time t + At. The mesh moves with the fluid, but parts of it may need to be 

moved back, to reduce the distortion of the grid. This is the Eulerian or remap step, 

which allows the simulation to continue to follow a complicated flow in the next time 

step. 

In the Eulerian step, a new grid is chosen, using information from the old grid. Then 

material is moved between grid zones in the new mesh, to respond to the new position of 

grid points in the fluid. The fluid does not advance in time during the Eulerian step, and 

the equations of motion are not solved. However, approximations are made when mate- 

rial is moved from one mesh zone to another. Therefore, density, velocity and energy 

may change slightly during the Eulerian step. 

7.0 Grid Generation 
The easiest grid to use mathematically is a uniform, orthogonal grid in a rectangular 

region. But fluid dynamics problems don’t always conform to such a mesh. The 

Lagrangian step of an ALE code requires the mesh to follow the flow, which means the 

distribution of zones within the domain is constantly changing, and boundaries between 

fluids are moving. 

An effective way to represent this is to transform a uniform, orthogonal mesh onto the 
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physical space of the problem [ 17][34][63]. This adds a great deal of extra math to an 

already complicated problem. But it has several advantages. Suppose a grid (let’s take 

an orthogonal one for example) were chosen to fit a curved boundary: 

There are several problems with this: 

1. It is hard to define the boundary, since it does not fall on coordinate lines. 

2. The grid spacing next to the boundary is not even with the rest of the grid spacing. 
This causes centered difference approximations to lose accuracy. 

3. Grid points are not evenly spaced on the boundary, making some areas poorly 
defined. To put extra grid points on boundary, extra grid points are also created 
inside, which makes the program slower. 

These three problems can be solved by transforming a uniform, orthogonal grid in 

“logical space” onto the “physical space” of the actual fluid flow. 

Logical Space (5, rl) 

There are two ways to choose the coordinate transformation to connect the logical 
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with the physical space. The first is to choose an algebraic relationship, such as a poly- 

nomial or a trigonometric function. This is easiest in one dimension, and is often used 

for boundaries. The second is to choose a PDE to represent the relationship between 

logical and physical space. 

Elliptic PDE’s work best because of their properties: 

1. The solutions are smooth (have continuous functions and derivatives) if the coeffi- 
cients are smooth. 

2. The solutions are determined by the values on the boundary. (The grid point distribu- 
tion on the boundary must be chosen before the PDE is solved on the interior grid 
points. The algebraic method is often used for the 1 dimensional boundary to a 2 
dimensional problem. Either method can be used in the 3 dimensional case). 

3. The maximum and minimum of the solution will occur on the boundaries. 

In choosing which elliptic equation to use, there are three important considerations: 

1. Each point in each space must map to a point which is within the other space. 

2. The transformation must be “one to one”. That is, each point must map into one and 
only one point. 

3. The transformation must be “onto”. That is, if one point in one space maps to another 
point in the other space, the reverse transformation must map back to the first point. 

This makes the transformation isomorphic. 

The Jacobian matrix is an important tool in coordinate transformations. For the map- 

ping from physical to logical space, the Jacobian matrix is: 

@Q 84) 

The determinant of this matrix, J, represents the volume of a mesh zone in the physi- 
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cal space. The “inverse mapping” theorem [ 171 states that the transformation is one to 

one if and only if J is non-zero. 

Consider Laplace’s equation in a two dimensional example. There are two possible 

mappings between the logical and physical space using this equation: 

1. al.& = 
ax2 ay2 

0 and&+&=() 
ax2 ay2 

or 

(EQ 85) 

The second mapping looks more useful, since the object is to find (x,y). The logical 

grid (5,~) is fixed, and is used to generate a new physical mesh at each remap step of 

the ALE code. The second mapping also involves easier math because (5, q) are 

orthogonal and evenly spaced, so the derivatives are simple finite difference approxima- 

tions . 

However, it has been shown [ 171 that the second mapping gives J = 0 if the physical 

region is not convex. So the first Laplace’s equation mapping, known as the equipoten- 

tial method, is used instead. This means the transformation from logical to physical 

space must also be found in order to find x and y in terms of (5, q) . 

In order to perform finite difference approximations for derivatives in (x,y) space, the 

nearest neighbors of each grid point need to be well defined. In cases where they are 

not, calculus of variations can be used to change the differential equation into an integral 

one. 
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The equipotential method is a simple PDE griding technique, with the advantage of 

guaranteed “one to one.” But it has the disadvantage of spreading mesh points evenly 

across the domain. For example, if extra mesh points have been clustered in one part of 

the domain to describe an interface, the equipotential method will spread them out so 

that they are more evenly distributed across the domain. The equipotential method also 

tends to cluster grid lines over convex boundaries, and spread them out over concave 

boundaries. 

An ALE code also wants to create each new mesh in response to the condition of the 

flow in the most recent time step. Grid points should move only if they are becoming so 

tangled that the program is imperiled. Some regions may behave in a pure Eulerian 

fashion, with no grid motion, while others follow the flow in a completely Lagrangian 

fashion. Still other points may move at some pace in between, determined by the needs 

of the flow. 

The most recent grid needs to determine how the new grid will be generated. There 

are two ways that Laplace’s equation can be modified to allow control of the node spac- 

ing. One is to use Poisson’s equation instead of Laplace’s: 

a2c I 3% &+ a2q - = F(x, y) and - 
ax2 ay2 

- = Gky) 
ax2 ay2 

@Q 87) 

But it is harder to have a selective influence considering local conditions with Pois- 

son’s equation. F(x,y) and G(x,y) act as source terms in a heat conduction type equa- 

tion. They make hot parts hotter. 

A better way to modify the equipotential method is to use a weighted Laplace’s equa- 

tion: 



h h 3 W2(x, y) . s) + “( W2(x, Y> . &) = 0 
ay 
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(EQ W 

@Q 89) 

As with the heat example, diffusion coefficients cause the heat to move from hot to 

cold, creating an even continuum between extremes. Information from the most recent 

grid can be used in calculating W, and W, , allowing the mesh to respond to the most 

recent mesh motion. The Jacobian J, representing the zonal volume, can be used, as well 

as physical quantities such as pressure. The solution to this equation is taken iteratively 

[63]. Once the new grid is defined, density, momentum and energy are redistributed on 

the new mesh with an advection algorithm. 
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